Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-30T22:32:04.470Z Has data issue: false hasContentIssue false

Optimization of X-ray emission from a laser-produced plasma in a narrow wavelength band

Published online by Cambridge University Press:  09 March 2009

G. E. Van Dorssen
Affiliation:
Association Euratom-FOM, FOM Institute for Plasma Physics Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein, The Netherlands
E. Louis
Affiliation:
Association Euratom-FOM, FOM Institute for Plasma Physics Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein, The Netherlands
F. Bijkerk
Affiliation:
Association Euratom-FOM, FOM Institute for Plasma Physics Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein, The Netherlands

Abstract

The X-ray emission from laser-produced plasmas at an X-ray wavelength of approximately 10.4 nm was measured for Al and Gd target materials. The laser power density on the target surface was varied between 1.5 × 1010 and 3 × 1012 W/cm2 to obtain different electron temperatures. The output from the plasma was measured using an X-ray reflecting Pd-C multilayer coating as a wavelength-selective element and a diamond photoconductive detector. The emission at 10.4 nm is strongest at the low end of the power density range investigated. A strong increase is found for Al targets due to a contribution of line radiation, which is not present in the Gd plasmas. The measured conversion efficiency for Al plasmas was (4.5 ± 1)% in a 3% bandwidth at an X-ray wavelength of 10.4 nm.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bijkerk, F. et al. 1989a Microelectronic Eng. 9, 121.CrossRefGoogle Scholar
Bijkerk, F. et al. 1989b SPIE Conf. Proc. 1089, 274.CrossRefGoogle Scholar
Bijkerk, F. et al. 1992 to be published.Google Scholar
Brug, H. van et al. 1989 J. X-Ray Sci. Tech. 1, 121.Google Scholar
Carroll, P.K. et al. 1980 Appl. Optics 19, 1454.CrossRefGoogle Scholar
Cerjan, C. & Rosen, M.D. 1991 in OSA Proceedings on Soft X-Ray Projection Lithography,Bokor, Jeffrey ed. (Optical Society of America, Washington, DC), p. 72.Google Scholar
Chaker, M. et al. 1988 J. Appl. Phys. 63, 892.CrossRefGoogle Scholar
Colombant, D. & Tonon, G.F. 1973 J. Appl. Phys. 44, 3524.CrossRefGoogle Scholar
Gerritsen, H.C. et al. 1986 J. Appl. Phys. 59, 2337.CrossRefGoogle Scholar
Kania, D.R. et al. 1990 J. Appl. Phys. 68, 124.CrossRefGoogle Scholar
Kauffman, R.L. & Phillion, D.W. 1991 in OSA Proceedings on Soft X-Ray Projection Lithography,Bokor, Jeffrey ed. (Optical Society of America, Washington, DC), p. 68.Google Scholar
Kelly, R.L. 1987 J. Phys. Chem. Ref. Data. 16 (suppl.), 1.Google Scholar
Kodama, R. et al. 1987 Appl. Phys. Lett. 50, 720.CrossRefGoogle Scholar
Louis, E. et al. 1992 in Proceedings of 21st ECLIM (European Conference on Laser Interaction with Matter, Warsaw), to be published.Google Scholar
McWhirter, R.W.P. 1965 in Plasma Diagnostic Techniques. (Huddlestone, R.H. and Leonard, S.L. eds.) (Academic Press, New York), chap. 5.Google Scholar
Michette, A.G. et al. 1986 J. Phys. D Appl. Phys. 19, 363.CrossRefGoogle Scholar
Murakami, K. et al. 1986 Phys. Rev. Lett. 56, 655.CrossRefGoogle Scholar
Rockett, P.D. et al. 1991 in OSA Proceedings on Soft X-Ray Projection Lithography,Bokor, Jeffrey ed. (Optical Society of America, Washington, DC), p. 76.Google Scholar
Tanaka, K.A. et al. 1989 SPIE Conf. Proc. 1140, 350.CrossRefGoogle Scholar
Voorma, H. -J. & Bijkerk, F. 1992 Microelectronic Eng. 17, 145.CrossRefGoogle Scholar