Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T00:57:55.881Z Has data issue: false hasContentIssue false

On thermonuclear burn propagation in a pre-compressed cylindrical DT target ignited by a heavy ion beam pulse

Published online by Cambridge University Press:  04 November 2013

R. Ramis*
Affiliation:
E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid, Spain
J. Meyer-Ter-Vehn
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany
*
Address correspondence and preprint requests to: R. Ramis, E.T.S.I. Aeronáuticos, P. Cardenal Cisneros 3, 28040 Madrid, Spain. E-mail: rafael.ramis@upm.es

Abstract

Thermonuclear ignition and burn propagation in pre-compressed cylindrical deuterium-tritium (DT) targets is studied by two-dimensional radiation hydrodynamics simulations using the code MULTI-2D. Special attention is paid to self-sustained steady burn wave propagation. Peak temperatures and burn wave velocity scale with the density-radius product of the fuel, and wave propagation is obtained for (ρR)DT ≥ 0.45 g/cm2. Radiation transport is identified as the dominant mechanism to drive the wave. Details of ignition by a heavy ion beam pulse are also presented. Limitations in the physics basis of the simulations are pointed out. The results are compared with previous publications found in the literature.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. & Meyer-ter-Vehn, J. (2004). The physics of inertial fusion. Oxford: Clarendon Press.CrossRefGoogle Scholar
Avrorin, E.N., Bunatyan, A.A., Gadzhiev, A.D., Mustafin, K.A., Nurbakov, A.Sh., Pisarev, V.N., Feoktistov, L.P., Frolov, V.D. & Shibarshov, L.I. (1984). Numerical calculations on fusion detonation in a dense plasma. Sov. J. Plasma Phys. 10, 298303.Google Scholar
Bar-Shalom, A. & Oreg, J. (1996). Photoelectric effect in the super transition array model. Phys. Rev. E 54, 18501856.Google Scholar
Basko, M.M., Churazov, M.D. & Aksenov, A.G. (2002). Prospects of heavy ion fusion in cylindrical geometry. Laser Part. Beams 20, 411414.Google Scholar
Helsley, C.E. & Burke, R.J. (2013). Economic viability of large-scale fusion systems. Nuclear Instr. Methods in Physics Res. A http://dx.doi.org/10.1016/j.nima.2013.05.095.Google Scholar
Henestroza, E. & Logan, B.G. (2012). Progress towards a high-gain and robust target design for heavy ion fusion. Phys. Plasmas 19, 072706.Google Scholar
Koshkarev, D.G. (2002). Heavy ion driver for fast ignition. Laser Part. Beams 20, 595597.Google Scholar
Piriz, A.R., Portugues, R.F., Tahir, N.A. & Hoffmann, D.H.H. (2002). Analytic model for studying heavy-ion-imploded cylindrical targets. Laser Part. Beams 20, 427429.Google Scholar
Ramis, R. & Ramírez, J. (2004). Indirectly driven target design for fast ignition with proton beams, Nucl. Fusion 44, 720730.Google Scholar
Ramis, R., Meyer-ter-Vehn, J. & Ramírez, J. (2009). MULTI2D - A computer code for two-dimensional radiation hydrodynamics. Comp. Phys. Comm. 180, 977994.Google Scholar
Rickert, A., Eidmann, K., Meyer-ter-Vehn, J., Serduke, F. & Iglesias, C.A. (eds.) (1995). Third International Opacity Workshop & Code Comparison Study. Final Report. Report MPQ204. Max-Planck-Institute for Quantum Optics, 85748 Garching, Germany.Google Scholar
Sharkov, B. (2007). Overview of Russian heavy ion inertial fusion energy program. Nucl. Instr. Meth. Phys. Res. A 577, 1420.Google Scholar
Sharkov, B. & Varentsov, D. (2013). Experiments on extreme states of matter towards HIF at FAIR. Nucl. Instr. Meth. Phys. Res. A, in press.Google Scholar
Stöckl, C. & Tsakiris, G.D. (1991). Experiments with laser-irradiated cylindrical targets. Laser Part. Beams 9, 725747.Google Scholar
Stöckl, C. & Tsakiris, G.D. (1993). Experiments on energy redistribution by thermal radiation in cylindrical cavities. Phys. Rev. Lett. 70, 943947.Google Scholar
Tahir, N.A., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Temporal, A.R.M., Hoffmann, D.H.H. & Fortov, V.E. (2005). The CERN large Hadron collider as a tool to study high-energy density matter. Phys. Rev. Lett. 94, 135004.Google Scholar
Tsakiris, G.D. (1992). Energy redistribution in cavities by thermal radiation. Phys. Fluids B 4, 9921015.CrossRefGoogle Scholar
Vatulin, V.V. & Vinokurov, O.A. (2002). Fast ignition of the DT fuel in the cylindrical channel by heavy ion beams. Laser Part. Beams 20, 415418.Google Scholar
Zel'dovich, Ya.B. & Raizer, Yu.P. (1967). Physics of shock waves and high temperature phenbomena. New York: Academic Press.Google Scholar