Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T17:15:00.013Z Has data issue: false hasContentIssue false

Narrowband flat-top Brillouin gain spectrum and low distortion amplification based on pump phase modulation

Published online by Cambridge University Press:  18 July 2013

W. Gao*
Affiliation:
Department of optics information science and technology, Harbin University of Science and Technology, Harbin, China
S.N. Liu
Affiliation:
Department of optics information science and technology, Harbin University of Science and Technology, Harbin, China
Y.F. Bi
Affiliation:
Department of optics information science and technology, Harbin University of Science and Technology, Harbin, China
X.B. Hu
Affiliation:
Department of optics information science and technology, Harbin University of Science and Technology, Harbin, China
*
Address correspondence and reprint requests to: W. Gao, Department of optics information science and technology, Harbin University of Science and Technology, Harbin, China. E-mail: wei_g@163.com

Abstract

We theoretically and experimentally investigate the conditions of obtaining a narrowband flat-top Brillouin gain spectrum (BGS) based on single-frequency and multi-frequency phase modulations. Using the unequal-amplitude spectral lines, the flat-top BGS can be realized by controlling the intensity ratio and the frequency separation between them. In experiment, we obtain the flat-top gain spectra with the bandwidths of 40 MHz and 125 MHz, and with the top fluctuation of less than 0.21 dB. Based on this, we also achieve low distortion Brillouin amplification of a probe signal pulse and spectrum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ba, D.X., Lu, Z.W. & Zhu, C.Y. (2011). Generation of multi-line spectrum via intensity modulation for the broadening of brillouin gain bandwidth. IEEE. Academic International Symposium on Optoelectronics and Microelectronics Technology (AISOMT), Harbin, 108.CrossRefGoogle Scholar
Dong, Y.K., Lu, Z.W., Li, Q. & Liu, Y.F. (2008). Broadband Brillouin slow light based on multi-frequency phase modulation in optical fibers. J. Opt. Soc. Am. B 25, C109C115.CrossRefGoogle Scholar
Dong, Y.K., Zhang, H.Y., Chen, L. & Bao, X.Y. (2012). 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair. Appl. Opt. 51, 12291235.CrossRefGoogle ScholarPubMed
Geng, X.Z., Hasi, W.L.J., Jin, C.Y., Lin, D.Y., He, W.M., Fan, R.Q. & Lv, Z.W. (2011). Investigation of optical limiting characteristic based on the combination of stimulated Brillouin scattering and metal-phthalocyanine complex. Laser Part. Beams 30, 17.Google Scholar
Herraez, M.G., Song, K.Y. & Thevenaz, L. (2006). Arbitrary-bandwidth Brillouin slow light in optical fibers. Opt. Express 14, 13951400.CrossRefGoogle Scholar
Lu, Z.W., Dong, Y.K. & Li, Q. (2007). Slow light in multi-line Brillouin gain spectrum. Opt. Express 15, 18711877.CrossRefGoogle ScholarPubMed
Minardo, A., Bernini, R. & Zeni, L. (2006). Low distortion Brillouin slow light in optical fibers using AM modulation. Opt. Express 14, 58665876.CrossRefGoogle ScholarPubMed
Pant, R., Byrnes, A., Poulton, C.G., Li, E.B, Choi, D.Y., Madden, S., Davies, B.L. & Eggleton, B.J. (2012). Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering. Opt. Lett. 37, 969971.CrossRefGoogle ScholarPubMed
Sakamoto, T., Yamamoto, T., Shiraki, K. & Kurashima, T. (2008). Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb. Opt. Express 16, 80268032.CrossRefGoogle ScholarPubMed
Shi, J.L., Tang, Y.J., Wei, H.J., Zhang, L., Zhang, D., Shi, J.W., Gong, W.P., He, X.D., Yang, K.C. & Liu, D.H. (2012). Temperature dependence of threshold and gain coefficient of stimulated Brillouin scattering in water. Appl. Phys. B 108, 717720.CrossRefGoogle Scholar
Shin, J.S., Park, S.W., Kong, H.J. & Yoon, J.W. (2010). Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors. Appl. Phys. Lett. 96, 131116.CrossRefGoogle Scholar
Stenner, M.D., Neifeld, M.A., Zhu, Z.M., Dawes, A.M.C. & Gauthier, D.J. (2005). Distortion management in slow-light pulse delay. Opt. Express 13, 999510002.CrossRefGoogle ScholarPubMed
Tanemura, T., Takushima, Y. & Kikuchi, K. (2002). Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber. Opt. Lett. 27, 15521554.CrossRefGoogle ScholarPubMed
Villafranca, A. & Lazari, J.A. (2005). Stimulated Brillouin scattering gain profile characterization by interaction between two narrow-linewidth optical sources. Opt. Express 13, 73367341.CrossRefGoogle ScholarPubMed
Wiatrek, A., Preubler, S., Jamshidi, K. & Schneider, T. (2012). Frequency domain aperture for the gain bandwidth reduction of stimulated Brillouin scattering. Opt. Lett. 37, 930932.CrossRefGoogle ScholarPubMed
Wise, A., Tur, M. & Zadok, A. (2011). Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering. Opt. Express 19, 2194521955.CrossRefGoogle ScholarPubMed
Zadok, A., Eyal, A. & Tur, M. (2007). Gigahertz-wide optically reconfigurable filters using stimulated brillouin scattering. J. Lightwave Technol. 25, 21682174.CrossRefGoogle Scholar
Zhang, L., Zhang, D, Shi, J.L., Shi, J.W., Gong, W.P. & Liu, D.H. (2012). Investigations on coherence of stimulated Brillouin scattering excited by a single-mode-pulsed laser. Appl. Phys. B 109, 137141.CrossRefGoogle Scholar
Zhu, Z., Dawes, A.M.C., Gauthier, D.J., Zhang, L. & Willner, A.E. (2007). Broadband SBS Slow Light in an Optical Fiber. J. Lightwave Technol. 25, 201206.CrossRefGoogle Scholar