Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T16:28:13.336Z Has data issue: false hasContentIssue false

Multiply charged ion emission from laser produced tungsten plasma

Published online by Cambridge University Press:  11 October 2012

B. Ilyas
Affiliation:
Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
A.H. Dogar
Affiliation:
Physics Division, Pakistan Institute of Nuclear Science and Technology, Islamabad, Pakistan
S. Ullah
Affiliation:
Physics Division, Pakistan Institute of Nuclear Science and Technology, Islamabad, Pakistan
N. Mahmood
Affiliation:
Optics Laboratories, Islamabad, Pakistan
A. Qayyum*
Affiliation:
Physics Division, Pakistan Institute of Nuclear Science and Technology, Islamabad, Pakistan
*
Address correspondence and reprint requests to: A. Qayyum, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan. E-mail: aqayyum11@yahoo

Abstract

Plasma was generated by focusing 10 ns Nd:YAG (λ = 1064 nm) laser pulse on the thick tungsten target. The laser fluence at the target was varied in the range of 3.57–10.97 J/cm2. The ion emission from the expanding tungsten plasma was analyzed with the help of an ion collector and time-of-flight electrostatic ion energy analyzer. About 44 times rise in the ion charge per laser shot was observed in the investigated laser fluence range. The measured threshold fluence for onset of the tungsten plasma was 3.27 J/cm2. The estimated plume expansion coefficient Zinf/Xinf = 2.5 ± 0.2 was in agreement with the previous experimental studies and the predictions of self-similar plume expansion model. The electrostatic ion energy analyzer study showed that charge state of the W ions increases with the laser fluence and maximum ion charge state was 5+. It was observed that threshold fluence for appearance of a specific charge state can be measured. A clear correlation between the relative abundances of W(n−1)+, Wn+, and W(n+1)+ indicates that higher order charge states are most probably produced by stepwise ionization process.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alekseev, N.N., Balabaev, A.N., Vasilyev, A.A., Satov, Y.A., Savin, S.M., Sharkov, B.Yu., Shumshurov, A.V. & Roerich, V.C. (2012). Development of laser-plasma generator for injector of C4+ ions. Laser Part. Beams 30, 6573.CrossRefGoogle Scholar
Amoruso, S., Berardi, V., Bruzzese, R., Spinelli, N. & Wang, X. (1998). Kinetic energy distribution of ions in the laser ablation of copper targets. Appl. Surf. Sci. 127–129, 953958.CrossRefGoogle Scholar
Anisimov, S.I., Bäuerle, D. & Luk'yanchuk, B.S. (1993). Gas dynamics and film profiles in pulsed-laser deposition of materials. Phys. Rev. B 48, 1207612081.CrossRefGoogle ScholarPubMed
Beigman, I., Pospieszczyk, A., Sergienko, G., Tolstikhina, I.Yu. & Vainshtein, L. (2007). Tungsten spectroscopy for the measurement of W-fluxes from plasma facing components. Plasma Phys. Contr. Fusion 49, 18331847.CrossRefGoogle Scholar
Benavides, O., Lebedeva, O. & Golikov, V. (2011). Reflection of nanosecond Nd:YAG laser pulses in ablation of metals. Opt. Expr. 19, 2184221848.CrossRefGoogle ScholarPubMed
Braren, B., Bukoski, J. & Norton, D. (1993). Laser Ablation in Material Processing and Applications. Pittsburgh: Material research Society.Google Scholar
Burdt, R.A., Yuspeh, S., Sequoia, K.L., Tao, Y., Tillack, M.S. & Najmabadi, F. (2009). Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064nm laser. J. Appl. Phys. 106, 03331010333105.CrossRefGoogle Scholar
Caridi, F., Torrisi, L., Mezzasalma, A.M., Mondio, G. & Borrielli, A. (2009). Al2O3 plasma production during pulsed laser deposition. Eur. Phys. J. D. 54, 467472.CrossRefGoogle Scholar
Dogar, A.H., Ilyas, B., Qayyum, H., Ullah, S. & Qayyum, A. (2011). Angular distributions of flux and energy of the ions emitted during pulsed laser ablation of copper. Eur. Phys. J. Appl. Phys. 54, 1030110304.CrossRefGoogle Scholar
Dubenkov, V., Sharkov, B., Golubev, A., Shumshurov, A., Shamaev, O., Roudskoy, I., Sireltov, A., Satov, Y., Makarov, K., Smakovsky, Y., Hoffmann, D., Laux, W., Muller, R.W., Spaedtke, P., Stöckl, C., Wolf, B. & Jakoby, J. (1996). Acceleration of Ta+10 ions produced by laser ion source in RFQ MAXILAC. Laser Part. Beams 14, 385392.CrossRefGoogle Scholar
Hansen, T.N., Schou, J. & Lunney, J.G. (1999). Langmuir probe study of plasma expansion in pulsed laser ablation. Appl. Phys. A 69, S601S604.CrossRefGoogle Scholar
Hirai, T., Maier, H., Rubel, M., Mertens, Ph., Neu, R., Gauthier, E., Likonen, J., Lungu, C., Maddaluno, G., Matthews, G.F., Mitteau, R., Neubauer, O., Piazza, G., Philipps, V., Riccardi, B., Ruset, C., Uytdenhouwen, I. & JET EFDA Contributors. (2007). R&D on full tungsten divertor and beryllium wall for JET ITER-like wall project. Fusion Engineering and Design 82, 18391845.CrossRefGoogle Scholar
Hofer, R., Hass, J. & Gallimore, A. (1999). Proc. 26 thInt. Conf. on Electric Propulsion. Kitakyushu. Japan.Google Scholar
Ilyas, B., Dogar, A.H., Ullah, S. & Qayyum, A. (2011). Laser fluence effects on ion emission from a laser-generated Cu plasma. J. Phys. D: Appl. Phys. 44, 295202-1/295202-6.CrossRefGoogle Scholar
Kashiwagi, H., Hattori, T., Hayashizaki, N., Yamamato, K., Takahashi, Y. & Hata, T. (2004). Nd-Yag laser ion source for direct injection scheme. Rev. Sci. Instum. 75, 15691571.CrossRefGoogle Scholar
Kutner, V.B., Bykovsky, Y.A., Gusev, V.P., Kozyrev, Y.P. & Peklenkov, V.D. (1992). The laser ion source of multiply charged ions for the U-200 LNR JINR cyclotron. Rev. Sci. Instrum. 63, 28352837.CrossRefGoogle Scholar
Láska, L., Krása, J., Mašek, K., Pfeifer, M., Trenda, P., Králiková, B., Skála, J., Rolena, K., Woryna, E., Farny, J., Parys, P., Wołowski, J., Mróz, W., Shumshurov, A., Sharkov, B., Collier, J., Langbein, K. & Haseroth, H. (1996). Multiply charged ion generation from NIR and visible laser produced plasma. Rev. Sci. Instum. 67, 950952.CrossRefGoogle Scholar
Mannion, P., Favre, S., O'Connor, G.M., Doggett, B. & Lunney, J.G. (2005). Langmuir probe study of plasma expansion in femtosecond pulsed laser ablation of silver. Proc. SPIE 5827, 457466.Google Scholar
Margarone, D., Torrisi, L., Borrielli, A. & Caridi, F. (2008). Silver plasma by pulsed laser ablation. Plasma Sour. Sci. Technol. 17, 035019-1/035019-7.CrossRefGoogle Scholar
Mertens, Ph., Altmann, H., Hirai, T., Philipps, V., Pintsuk, G., Rapp, J., Riccardo, V., Schweer, B., Uytdenhouwen, I.abd Samm, U. (2009). Development and qualification of a bulk tungsten divertor row for JET. J. Nucl. Mat. 390–391, 967970.CrossRefGoogle Scholar
Mintsev, V., Gryaznov, V., Kulish, M., Fortov, V., Sharkov, B., Golubev, A., Fertman, A., Stöckl, C. & Gardes, D. (1998). On measurements of stopping power in explosively driven plasma targets. Nucl. Instr. Meth. A 415, 715719.CrossRefGoogle Scholar
Rapp, J., Pintsuk, G., Mertens, Ph., Altmann, H., Lomas, P.J. & Riccardo, V. (2010). Geometry and expected performance of the solid tungsten outer diverter row in JET. Fusion Engin. Desig. 85, 153160.CrossRefGoogle Scholar
Romanov, V.I., Rupasov, A.A., Shikanov, A.S., Paperny, V.L., Moorti, A., Bhat, R.K., Naik, P.A. & Gupta, P.D. (2010). Energy distributions of highly charged ions escaping from a plasma via a low-voltage laser-induced discharge. J. Phys. D: Appl. Phys. 43, 465202-1/465202-7.CrossRefGoogle Scholar
Sellmair, J. & Korschinek, G. (1988). The Munich laser ion source. Nucl. Instr. Meth. A 268, 473477.CrossRefGoogle Scholar
Sharkov, B. (1995). Handbook of Ion Sources. Boca Raton: Chemical Rubber, 149.Google Scholar
Sharkov, B.Y. & Scrivens, R. (2005). Laser ion sources. IEEE Trans. Plasma Phys. 33, 17781785.CrossRefGoogle Scholar
Thestrup, B., Toftmann, B., Schou, J., Doggett, B. & Lunney, J.G. (2002). Ion dynamics in laser ablation plumes from selected metals at 355nm. Appl. Surf. Sci. 197–198, 175180.CrossRefGoogle Scholar
Torrisi, L., Caridi, F., Picciotto, A. & Borrielli, A. (2006). Energy distribution of particle ejected by laser-generated aluminum plasma. Nucl. Instr. Meth. B 252, 183189.CrossRefGoogle Scholar
Wolowski, J., Celona, L., Ciavola, G., Gammino, S., Krása, J., Láska, L., Parys, P., Rohlena, K., Torrisi, L. & Woryna, E. (2002). Expansion of tungsten ions emitted from laser-produced plasma in axial magnetic and electric fields. laser Part. Beams 20, 113118.CrossRefGoogle Scholar
Yeates, P., Costello, J.T. & Kennedy, E.T. (2010). The DCU laser ion source. Rev. Sci. Instum. 81, 043305-1/043305-10.CrossRefGoogle ScholarPubMed