Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T03:28:26.706Z Has data issue: false hasContentIssue false

Laser-driven shock wave experiments at the University of British Columbia

Published online by Cambridge University Press:  09 March 2009

A. Ng
Affiliation:
Physics Department, University of British Columbia, Vancouver, B.C., V6T 2A6, Canada
D. Parfeniuk
Affiliation:
Physics Department, University of British Columbia, Vancouver, B.C., V6T 2A6, Canada
L. Da Silva
Affiliation:
Physics Department, University of British Columbia, Vancouver, B.C., V6T 2A6, Canada
P. Celliers
Affiliation:
Physics Department, University of British Columbia, Vancouver, B.C., V6T 2A6, Canada

Abstract

A review of recent laser-driven shock wave experiments at the University of British Columbia is presented. These include emissivity and reflectivity measurements on target rear surfaces when the shock wave emerges as well as measurements of the trajectories of shock propagation in initially transparent targets irradiated by temporally tailored laser pulses. The rear surface measurements allowed us to study the equation of state and electron conductivity of dense plasmas while coalescence of shock waves was evident in the trajectory of shock waves driven by a shaped pulse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Book, D. L., Boris, J. P. & Hain, K. 1975 J. Comput. Phys. 18, 248.CrossRefGoogle Scholar
Christiansen, J. P., Ashby, D. F. T. F. & Roberts, K. W. 1974 Comput. Phys. Commun. 7, 271.CrossRefGoogle Scholar
Cottet, F., Romain, J. P., Fabbro, R. & Faral, B. 1984 Phys. Rev. Lett. 52, 1884.Google Scholar
Da Silva, L., Ng, A., & Parfeniuk, D. 1985 J. Appl. Phys. 58, 3624.Google Scholar
Ginzburg, V. L., 1970 The Propagation of Electromagnatic Waves in Plasmas, Chapter IV, Pergamon Press Oxford.Google Scholar
Lee, Y. T. & More, R. M. 1984 Phys. Fluids, 17, 1273.Google Scholar
More, R. M. 1981, in Laser Interaction and Related Plasma Phenomena, edited by H. J. Schwarz H. Hora M. Lubin, and B. Yaakabi, Plenum Press, New York, 5, 253.Google Scholar
Ng, A., Parfeniuk, D. & Da Silva, L. 1985a Opt. Commun. 53, 389.CrossRefGoogle Scholar
Ng, A., Parfeniuk, D. & Da Silva, L. 1985b Phys. Rev. Lett. 54, 2604.CrossRefGoogle Scholar
Ng, A., Parfeniuk, D., Celliers, P. & Da Silva, L. 1985C Proc. 4th APS Topical Conference on Shock Waves in Condensed Matter, Spokane, Washington, July 22–25, Plenum Press, New York.Google Scholar
Parfeniuk, D., Ng, A., Da Silva, L. & Celliers, P. 1985 Opt. Commun. (in print).Google Scholar
Sesame, Library (a) Los Alamos National Laboratory, Los Alamos U.S.A., Material Numbers 3712, 23713.Google Scholar
Sesame, Library (b) Los Alamos National Laboratory, Los Alamos U.S.A., Material Numbers 23713.Google Scholar
Trainor, R. J., Shaner, J. W., Auerbach, J. M. & Holmes, N. C. 1979 Phys. Rev. Lett. 42, 1154.CrossRefGoogle Scholar
Trainor, R. J.Holmes, N. C., Anderson, R. A., Campbell, E. M., Mead, W. C., Olness, R. J.Turner, R. E. & Ze, F. 1983 Appl. Phys. Lett. 43, 542.CrossRefGoogle Scholar
Van, Kessel & Sigel, R. 1974 Phys. Rev. Lett. 33, 1020.Google Scholar
Vesser, L. & Solem, J. 1978 Phys. Rev. Lett. 40, 1391.CrossRefGoogle Scholar
Vesser, L. R., Solem, J. C. & Lieber, A. J. 1979 Appl. Phys. Lett. 35, 761.CrossRefGoogle Scholar
Yaakobi, B., Boehly, T., Bourke, B., Couture, Y., Craxton, R. S., Deletrez, J., Forsyth, J. M., Frankle, R. D., Goldman, L. M., McCrory, R. L., Richardson, M. C., Seka, W., Schwartz, D. & Soures, J. M. 1981 Opt. Commun. 39, 175.CrossRefGoogle Scholar
Zel'dovich, Ya. B. & Raizer, , Yu, P. 1966 Physics of Shock Waves and High Temperature Hydrodynamic Phenomenon, Academic Press, New York.Google Scholar