Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T17:34:07.729Z Has data issue: false hasContentIssue false

Laser fusion energy from p-7Li with minimized radioactivity

Published online by Cambridge University Press:  15 June 2012

M. Ghoranneviss*
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
A. Salar Elahi
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
H. Hora
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
G.H. Miley
Affiliation:
Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, Illinois
B. Malekynia
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
Z. Abdollahi
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
*
Address correspondence and reprint requests to: M. Ghoranneviss, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. E-mail: ghoranneviss@gmail.com

Abstract

The new possibility of side-on laser ignition of p-11B with negligible radioactivity encouraged to study the fusion of solid state p-7Li fuel that again turns out to be only about 10 times more difficult than the side-on ignition of solid deuterium-tritium using petawatt-picosecond laser pulses at anomalous interaction conditions if very high contrast ratio. Updated cross sections of the nuclear reaction are included.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J., Kozlov, A.A., Makowksi, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E. & Vankov, A.B. (1999). Investigation of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams 17, 323329.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction. Laser Part. Beams 23, 143148.CrossRefGoogle Scholar
Bagge, E. & Hora, H. (1974). Calculation of the reduced penetration depth of relativistic electrons in plasmas for nuclear fusion. Atomkernenergie 24, 143146.Google Scholar
Bobin, J.L. (1974). Nuclear fusion reactions in fronts propagating in solid DT. In Laser Interaction and Related Plasma Phenomena. (Schwarz, H. and Hora, H., Eds.). New York: Plenum Press.Google Scholar
Chen, H. & Wilks, S.C. (2005). Evidence of enhanced effective hot electron temperatures in ultraintense laser-solid interaction due to reflexing. Laser Part. Beams 23, 411416.CrossRefGoogle Scholar
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 412422.Google Scholar
Dean, S.O. (2008). The rational for and expanding inertial fusion energy program. J. Fusion Ener. 27, 149153.Google Scholar
Deutsch, C., Bret, A., Firpo, C., Gremillet, L., Lefebvre, E. & Lifshitz, A. (2008). Onset of coherent electromagnetic structures in the relativistic electron beam deuterium-tritium fuel interaction for fast ignition concern. Laser Part. Beams 26, 157165.Google Scholar
Eisenbarth, S., Rosmei, O.N., Shevelko, V.P., Blazsevic, A. & Hoffmann, D.H.H. (2007). Numerical simulations of the projectile ion charge difference in solid and gaseous stopping matter. Laser Part. Beams 25, 601612.Google Scholar
Eliezer, S. & Hora, H. (1989). Double-layers in laser-produced plasmas. Phys. Rep. 172, 339407.CrossRefGoogle Scholar
Eliezer, S. (2012). Relativistic acceleration of micro-foils with prospects for fast ignition. Laser Part. Beams 30, doi: 10.1017/S0263034611000863CrossRefGoogle Scholar
Evans, R.G. (2008). Ion heating due to ionization and recombination. Laser Part. Beams 26, 2740.CrossRefGoogle Scholar
Gabor, D. (1933). Elektrostatische theorie des plasmas. Zeitschrift f. Physik 84, 474.CrossRefGoogle Scholar
Gabor, D. (1952). Wave theory of plasmas. Proc. Roy. Soc. London A 213, 72.Google Scholar
Ghoranneviss, M., Malekynia, B., Hora, H., Miley, G.H. & He, X. (2008). Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration. Laser Part. Beams 26, 105111.Google Scholar
Hora, H. (1969). Nonlinear confining and deconfining forces associated with interaction of laser radiation with plasma. Phys. Fluids 12, 182188.CrossRefGoogle Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers in nonlinear force produced cavitons at laser-plasma interaction. Phys. Rev. Lett. 53, 16501652.Google Scholar
Hora, H. (1985). The transient electrodynamic forces at laser plasma interaction. Phys. Fluids 28, 37063707.CrossRefGoogle Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.Google Scholar
Hora, H., Badziak, J., Boody, F., Hopfl, R., Jungwirth, K., Kralikova, B., Krasa, J., Laska, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002). Effects of picosecond and ns laser pulses for giant ion source. Opt. Commun. 207, 333338.Google Scholar
Hora, H., Badziak, J.Read, M.N., Li, Yu-Tong, Liang, Tian-Jiao, Liu Hong, Sheng Zheng-Ming, Zhang, Jie, Osman, F., Miley, G.H., Zhang, Weiyan, He, Xianto, Peng, Hanscheng, Glowacz, S., Jablonski, S., Wolowski, J., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven beams of very high intensity. Phys. Plasmas 14, 072701/1–7.CrossRefGoogle Scholar
Hora, H. (2007b). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3746.CrossRefGoogle Scholar
Hora, H., Malekynia, B., Ghoranneviss, M., Miley, G.H. & He, X. (2008). Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor. Appl. Phys. Lett. 93, 011101.Google Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects. Laser Part. Beams 27, 207222.Google Scholar
Hora, H., Miley, G.H., Flippo, K., Lalousis, P., Castillo, R., Yang, X., Malekynia, B. & Ghoranneviss, M. (2011). Review about acceleration of plasma by nonlinear forces from picoseond laser pulses and block generated fusion flame in uncompressed fuel. Laser Part. Beams 29, 353363.CrossRefGoogle Scholar
Kerns, J.R., Rogers, W.C. & Clark, J.G. (1972). Penetration of terawatt electron beams in polyethylene. Bull. Am. Phys. Soc. 17, 629.Google Scholar
Klimo, O. & Limpouch, J. (2006). Particle simulation of acceleration of quasineutral plasmas blocks by short laser pulses. Laser Part. Beams 24, 107112.CrossRefGoogle Scholar
Lalousis, P., Foldes, I. & Hora, H. (2012). Ultrahigh acceleration of plasma by picosecond terawatt laser pulses for fast ignition of fusion. Laser Part. Beams 30, doi: 10.1017/S0263034611000875.Google Scholar
Malekynia, M., Hora, H., Ghoranneviss, M. & Miley, G.H. (2009). Collective alpha particle stopping for reduction of the threshold for laser fusion using nonlinear force driven plasma blocks. Laser Part. Beams 27, 233241.CrossRefGoogle Scholar
Moses, E., Miller, G.H. & Kauffman, R.L. (2006). The ICF status and plans in the United States. J. De Phys. 133, 916.Google Scholar
Roth, M., Brambrink, E., Audebert, B., Blazevic, A., Clarke, R., Cobble, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Sauerbrey, R. (1996). Acceleration of femtosecond laser produced plasmas. Phys. Plasmas 3, 47124716.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Landgon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.CrossRefGoogle ScholarPubMed
Winterberg, F. (2008). Laser for inertial confinement fusion driven by high explosives. Laser Part. Beams 26, 127135.CrossRefGoogle Scholar
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wong, L., Li, Z.H., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev. E 57, 37463752.Google Scholar