Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T23:41:15.807Z Has data issue: false hasContentIssue false

Ionic excimers and alkali dimer triplet-state excimer lasers

Published online by Cambridge University Press:  09 March 2009

Da Xing
Affiliation:
Institute for Laser Science, University of Electro-Communications, Chofu-shi, Tokyo 182, Japan
Ken-Ichi Ueda
Affiliation:
Institute for Laser Science, University of Electro-Communications, Chofu-shi, Tokyo 182, Japan
Hiroshi Takuma
Affiliation:
Institute for Laser Science, University of Electro-Communications, Chofu-shi, Tokyo 182, Japan

Abstract

Vacuum UV fluorescences from ionic alkali-halide and rare-gas alkali excimers were observed by e-beam excitation. The two diffuse emissions centered at 185 and 154 nm from the CsF vapor were attributed to the bound-free B2Σ+ → X2Σ+ and D2Π → X2Σ+ bands of (CsF)+, respectively. And, the 164- and 133-nm diffuse bands from gas the mixture of Xe or Kr with hot vapor of Rb were assigned to the emissions of (XeRb)+ and (KrRb)+ ionic excimers. In addition, amplified spontaneous emissions of the Na2 violet, K2 yellow, and Rb2 orange diffuse bands were observed from e-beam-excited alkali vapor with argon buffer gas. The continuum spectra centered at 436, 574, and 604 nm were attributed to triplet-triplet Na2, K2, and Rb2 23Πg → 13Σu+ bound-free transitions, respectively. The dissociative recombination of Na3+, K3+, or Rb3+ is discussed as an efficient formation process of the upper states in e-beam pumping.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allegrini, M. et al. 1977 Opt. Commun. 22, 329.Google Scholar
Allegrini, M. & Moi, L. 1980 Opt. Commun. 32, 91.CrossRefGoogle Scholar
Bahns, J.T. & Stwalley, W.C. 1984 Aappl. Phys. Lett. 44, 826.CrossRefGoogle Scholar
Bahns, J.T. et al. 1989 Laser Particle Beams 7, 545.CrossRefGoogle Scholar
Basov, N.G. et al. 1985a Sov. J. Quant. Electron. 15, 1455.Google Scholar
Basov, N.G. et al. 1985b Sov. J. Quant. Electron. 15, 1461.CrossRefGoogle Scholar
Basov, N.G. et al. 1987 Sov. J. Quant. Electron. 17, 106.CrossRefGoogle Scholar
Bernstein, R.B. & Levine, R.D. 1975 Adv. Atom. Mol. Phys. 11, 215.Google Scholar
Fiedler, J. et al. 1989 Z. Phys. D 11, 141.CrossRefGoogle Scholar
Frey, L. et al. 1989 J. Opt. Soc. Am. B 6, 1529.Google Scholar
Jeung, G.H. 1983 J. Phys. B 16, 4289.Google Scholar
Jeung, G.H. 1987 Phys. Rev. A 35, 26.Google Scholar
Jeung, G.H. & Ross, A.J. 1988 J. Phys. B 21, 1473.Google Scholar
Jeung, G.H. et al. 1990 Chem. Phys. Lett. 165, 494.CrossRefGoogle Scholar
Konowalow, D.D. et al. (unpublished).Google Scholar
Kopystynska, A. & Kowalczyk, P. 1979 Opt. Commun. 28, 78.Google Scholar
Krauss, M. & Stevens, W.J. 1991 J. Chem. Phys. 93, 4236.Google Scholar
Kubodera, S. et al. 1988 Opt. Lett. 13, 446.Google Scholar
Ligare, M. et al. 1983 Opt. Commun. 48, 39.Google Scholar
Luh, W.T. et al. 1986 Chem. Phys. Lett. 131, 335.Google Scholar
Luh, W.T. et al. 1988a J. Chem. Phys. 88, 2235.Google Scholar
Luh, W.T. et al. 1988b Chem. Phys. Lett. 144, 221.Google Scholar
Millar, P. et al. 1989 Opt. Lett. 14, 171.Google Scholar
Moore, C.E. 1958 Atomic Energy Levels (U.S. Government Printing Office, Washington, DC) Vol. 3, p. 124.Google Scholar
Pavolini, D. & Spiegelmann, F. 1987 J. Chem. Phys. 87, 2854.Google Scholar
Pichler, G. et al. 1983 J. Phys. B 16, 4633.Google Scholar
Radzewicz, C. et al. 1983 Opt. Commun. 44, 139.CrossRefGoogle Scholar
Radzig, A.A. & Smirnov, B.M. 1985 Reference Data on Atoms, Molecules and Ions (Springer-Verlag, Berlin), p. 121.Google Scholar
Sauerbrey, R. & Langhoff, H. 1985. IEEE J. Quant. Electron. QE-21, 179.CrossRefGoogle Scholar
Steigerwald, F. et al. 1988 J. Chem. Phys. 88, 7376.Google Scholar
Wang, Z.G. et al. 1986 Opt. Commun. 58, 315.Google Scholar
Woerdman, J.P. 1976 Chem. Phys. Lett. 43, 279.Google Scholar
Woerdman, J.P. 1978 Opt. Commun. 26, 216.CrossRefGoogle Scholar
Wu, C.Y.R. et al. 1983 Opt. Commun. 48, 28.CrossRefGoogle Scholar
Xing, D. et al. 1989 Chem. Phys. Lett. 163, 193.Google Scholar
Xing, D. et al. 1991a Jpn. J. Appl. Phys. 30, L1012.Google Scholar
Xing, D. et al. 1991b Jpn. J. Appl. Phys. 30, 3533.Google Scholar
Xing, D. et al. 1991c J. Opt. Soc. Am. B 8, 917.Google Scholar
Xing, D. et al. 1991d Appl. Phys. Lett. 58, 1701.Google Scholar
Xing, D. et al. (unpublished).Google Scholar