Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T15:50:00.428Z Has data issue: false hasContentIssue false

Investigations of pressure nonuniformity in laser-irradiated targets using incoherent optical smoothing

Published online by Cambridge University Press:  09 March 2009

I. R. G. Williams
Affiliation:
Blackett Laboratory, Imperial College of Science and Technology, Prince Consort Road, London SW7 2BZ, United Kingdom
G. J. Rickard
Affiliation:
Blackett Laboratory, Imperial College of Science and Technology, Prince Consort Road, London SW7 2BZ, United Kingdom
A. R. Bell
Affiliation:
Blackett Laboratory, Imperial College of Science and Technology, Prince Consort Road, London SW7 2BZ, United Kingdom

Abstract

From analytic models of the ablation process in laser-plasma experiments, as well as simulations with Fokker–Planck and Spitzer codes, we have identified a new effect, thermal inertia smoothing. This effect results in a smoother Fokker–Planck temporal and spatial variation of the ablation pressure than that for Spitzer, for the same applied timevarying laser intensity. It is therefore advantageous for incoherent optical smoothing schemes. This is especially true at early times in the laser pulse (≤100 ps).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bell, A. R. 1983 Phys. Fluids 26, 279.CrossRefGoogle Scholar
Brueckner, K. A. & Jorna, S. 1974 Rev. Mod. Phys. 46, 325.CrossRefGoogle Scholar
Emery, M. H. et al. 1982 Phys. Rev. Lett. 48, 253.CrossRefGoogle Scholar
Epperlein, E. M. 1989 Private communication.Google Scholar
Epperlein, E. M., Rickard, G. J. & Bell, A. R. 1988a Comput. Phys. Commun. 52, 7.CrossRefGoogle Scholar
Epperlein, E. M., Rickard, G. J. & Bell, A. R. 1988b Phys. Rev. Lett. 61, 2453.CrossRefGoogle Scholar
Evans, R. G., Bennett, A. J. & Pert, G. J. 1982 J. Phys. D 15, 1673.CrossRefGoogle Scholar
Gardner, J. H. & Bodner, S. E. 1981 Phys. Rev. Lett. 47, 1137.CrossRefGoogle Scholar
Kato, Y. et al. 1984 Phys. Rev. Lett. 53, 1057.CrossRefGoogle Scholar
Key, M. H. 1982 In Laser Plasma Interactions 2, edited by Cairns, R. A. (SUSSP Publications, University of Edinburgh, Edinburgh), p. 121.Google Scholar
Langdon, A. B. 1980 Phys. Rev. Lett. 44, 575.CrossRefGoogle Scholar
Lehmberg, R. H. & Obenschain, S. P. 1983 Opt. Commun. 46, 27.CrossRefGoogle Scholar
LLE, Review 1988 Edited by Kremens, R., Vol. 36, p. 158.Google Scholar
Manheimer, W. M., Colombant, D. G. & Gardner, J. H. 1982 Phys. Fluids 25, 1644.CrossRefGoogle Scholar
Nuckolls, J. et al. 1972 Nature 239, 139.CrossRefGoogle Scholar
Obenschain, S. P. et al. 1986 Phys. Rev. Lett. 56, 2807.CrossRefGoogle Scholar
Rickard, G. J., Bell, A. R. & Epperlein, E. M. 1989 Phys. Rev. Lett. 62, 2687.Google Scholar
Schmitt, A. J. 1988 Phys. Fluids 31, 3079.CrossRefGoogle Scholar
Skupsky, S. & LEE, K. 1983 J. Appl. Phys. 54, 3662.Google Scholar
Spitzer, L. JR. & Harm, R. 1953 Phys. Rev. 89, 977.Google Scholar