Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T18:15:10.342Z Has data issue: false hasContentIssue false

Effect of self focusing on the prolongation of laser produced plasma channel

Published online by Cambridge University Press:  23 January 2009

U. Verma*
Affiliation:
Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
A.K. Sharma
Affiliation:
Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
*
Address correspondence and reprint requests to: Updesh Verma, Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi-110016, India. E-mail: updesh.verma@mail2.iitd.ac.in

Abstract

A theoretical model for the prolongation of lifetime of a gaseous plasma channel formed by two pulse technique at laser intensities below the tunnel ionization threshold is developed. The first laser pulse ionizes the gas completely on the axis and partially off the axis, causing self-defocusing of the pulse. After the passage of the pulse, the plasma expands radially, creating an atom/ion density profile with a minimum on the axis. Partial recombination also sets in. As the second pulse arrives, after a time delay of less than the recombination time (~ns), the electrons get heated, and the recombination rate is slowed down. The second pulse self focuses, enhancing the heating rate and lengthening the lifetime of the plasma channel.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Braun, A., Korn, G., Liu, X., Du, D., Squier, J. & Mourou, G. (1995). Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 010073.Google Scholar
Burnett, N.H. & Corkum, P.B. (1989). Cold-plasma production for recombination extreme ultraviolet lasers by optical-field-induced ionization. J. Opt. Soc. Am. B 6, 1195.CrossRefGoogle Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tusi, Y.Y., Fedosejevs, R., Naseri, N.Masson-Laborde, P.E. & Rozmus, W. (2008). Qualsi-monoenergetic electron beams generated from 7 TW laser pulse in N2 and He gas targets. Laser Part. Beams 26, 147155.Google Scholar
Dawson, J.M., Hertzberg, A., Kidder, R.E., Vlases, G.C., Ahlstrom, H.G. & Steinhauer, L.C. (1971). Long-wavelength, high-powered lasers for controlled thermonuclear fusion. Plasma Phys. Contr. Nucl. Fusion Res. 1, 673.Google Scholar
Durfee, C.G. III & Milchberg, H.M. (1993). Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 2409.Google Scholar
La Fontaine, B., Vidal, F., Jiang, Z, Chien, C.Y, Comtois, D., Desparois, A., Johnston, T.W., Kieffer, J.-C., Pépin, H. & Mercure, H.P. (1999). Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air. Phys. Plasmas 6, 1615.Google Scholar
Gill, T.S. & Saini, N.S. (2007). Nonlinear interaction of a rippled laser beams with an electrostatic upper hybrid wave in collisional plasma. Laser Part. Beams 25, 283293.Google Scholar
Hao, Z.Q., Zhang, J., Li, Y.T., Lu, X., Yuan, X.H., Zheng, Z.M., Wang, Z.H., Kasparian, J., Rodriguez, M., Méjean, G., Yu, J., Salmon, E., Wille, H., Bourayou, R., Frey, S., André, Y.-B., Mysyrowicz, A., Sauerbrey, R., Wolf, J.-P. & Wöste, L. (2003). White-light filaments for atmospheric analysis. Sci. 301, 61.Google Scholar
Ladouceur, H.D., Baronavski, A.P., Lohrmann, D., Grounds, P.W. & Girardi, P.G. (2001). Electrical conductivity of a femtosecond laser generated plasma channel in air. Opt. Commun. 189, 107.CrossRefGoogle Scholar
Li, X.F., L'Huillier, A., feray, M., Lompre, L.A. & Mainfray, G. (1989). Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 39, 5751.Google Scholar
Ling, J.W. & Wei, Z.Y. (2005). Prolongation of the fluorescence lifetime of plasma channels in air induced by femtosecond laser pulses. Appl. Phys. B 80, 627.Google Scholar
Liu, C.S. & Tripathi, V.K. (1994). Interaction of Electromagnetic Waves with Electron Beams and Plasmas. Singapore: World Scientific.CrossRefGoogle Scholar
Mackinnon, A.J., Borghesi, M., Gaillard, R., Malka, G., Willi, O., Offenberger, A.A., Pukhov, A. & Meyer-ter-Vehn, J. (1999). Intense laser pulse propagation and channel formation through plasmas relevant for the fast ignitor scheme. Phys. Plasmas 6, 2185.CrossRefGoogle Scholar
Narayanan, V., Singh, V., Pandey, P.K., Shukla, N. & Thareja, R.K. (2007). Increasing lifetime of the plasma channel formed in air using picosecond and nanosecond laser pulses. J. Appl. Phys. 101, 073301.Google Scholar
Neff, S., Knobloch, R., Hoffmann, D.H.H., Tauschwitz, A. & Yu, S.S. (2006). Transport of heavy-ion beams in a 1 m free-standing plasma channel. Laser Part. Beams 24, 7180.Google Scholar
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 5159.Google Scholar
Pépin, H., Comtois, D., Vidal, F., Chien, C.Y., Desparois, A., Johnston, T.W., Kieffer, J.C., La Fontaine, B., Martin, F., Rizk, F.A.M., Potvin, C., Couture, P., Mercure, H.P., Bondiou-Clergerie, A. & Lalande, P. (2001). Triggering and guiding high-voltage large-scale leader discharges with sub-joule ultrashort laser pulses. Phys. Plasmas 8, 2532.Google Scholar
Rodriguez, M., Sauerbrey, R., Wille, H., Wöste, L., Fujii, T., André, Y.-B., Mysyrowicz, A., Klingbeil, L., Rethmeier, K., Kalkner, W., Kasparian, J., Salmon, E., Yu, J. & Wolf, J.-P. (2002). Triggering and guiding megavolt discharges by use of laser-induced ionized filaments. Opt. Lett. 27, 772.CrossRefGoogle ScholarPubMed
Saini, N S. & Gill, T.S. (2006). Self-focusing and self-phase modulation of an elliptic Gaussian laser beam in collisionless magnetoplasma. Laser Part. Beams 24, 447453.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self-Focusing of Laser Beams in Dielectric, Plasmas and Semiconductors. New Delhi: T M H Publishing Co. Ltd.Google Scholar
Sprangle, P., Esarey, E., Ting, A. & Joyce, G. (1988). Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 2146.Google Scholar
Tajima, T. & Dawson, J M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.Google Scholar
Tzortzakis, S., Prade, B., Franco, M. & Mysyrowicz, A. (2000). Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air. Opt. Commun. 181, 123.Google Scholar
Xiao, C., Hong-Bing, J. & Qi-huang, G. (2006). Lengthening the life time of ling plasma channel in air generated by femtosecond laser pulse. Chin. Phys. Lett. 23, 1482.CrossRefGoogle Scholar
Yang, H., Zhang, J., Yu, W., Li, Y.J. & Wei, Z.Y. (2001). Long plasma channels generated by femtosecond laser pulses. Phys. Rev. E 65, 016406.CrossRefGoogle ScholarPubMed
Yang, H., Zhang, J., Li, Y.J., Chen, Z.L., Teng, H., Wei, Z.Y. & Sheng, Z.M. (2002). Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air. Phys. Rev. E 66, 016406.CrossRefGoogle ScholarPubMed
Yu, W., Yu, M.Y., Xu, H., Tian, Y.W., Chen, J. & Wong, A.Y. (2007). Intense local plasma heating by stopping of ultrashort ultraintense laser pulse in dense plasma, Laser Part. Beams 25, 631638.Google Scholar
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.CrossRefGoogle Scholar
Zhu, J., Ji, Z., Deng, Y., Liu, J., Li, R. & Xu, Z. (2006). High-contrast light-by-light switching and and gate based on nonlinear photonic crystals. Opt. Express 14, 4915.Google Scholar