Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T18:45:11.690Z Has data issue: false hasContentIssue false

Effect of plasma material on intense laser-driven beam electrons in solid foils

Published online by Cambridge University Press:  05 January 2012

C.T. Zhou*
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China Center for Applied Physics and Technology, Peking University, Beijing, People's Republic of China
T.X. Cai
Affiliation:
Graduate School of China Academy of Engineering Physics, Beijing, People's Republic of China
W.Y. Zhang
Affiliation:
China Academy of Engineering Physics, Beijing, People's Republic of China
X.T. He
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China Center for Applied Physics and Technology, Peking University, Beijing, People's Republic of China
*
Address correspondence and reprint requests to: C.T. Zhou, Institute of Applied Physics and Computational Mathematics, Beijing 100094, People's Republic of China. E-mail: zcangtao@iapcm.ac.cn

Abstract

The electromagnetic field structures and transport properties of laser produced relativistic beam electrons propagating through Au+25, Cu+20, Al+10, and C+5 plasma foils are investigated. Simulations show that high plasma resistivity as well as high collision rate of the beam electrons with gold and copper plasmas can hinder the forward motion of the beam electrons inside the targets. However, the beam electrons can propagate for a relatively long distance in aluminum and carbon plasma targets. They are well collimated by the strong self-generated resistive magnetic field, resulting in higher sheath electric fields behind the target. The use of low-Z target material is therefore more efficient for collimating beam electrons as well as generating higher-energy ions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Birdsall, C.K. & Langdon, A.B. (1985). Plasma Physics via Computer Simulation. New York: McGraw-Hill.Google Scholar
Borghesi, M., Mackinnon, A.J.Bell, A.R., Malka, G., Vickers, C., Willi, O., Davies, J.R.Pukhov, A. & Mayer-ter-Vehn, J. (1999). Observations of collimated ionization channels in aluminum-coated glass targets irradiated by ultraintense laser pulses. Phys. Rev. Lett. 83, 43094312.CrossRefGoogle Scholar
Cai, H.B., Mima, K., Zhou, W.M., Jozaki, T., Nagatomo, H., Sunahara, A. & Mason, R.J. (2009). Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition. Phys. Rev. Lett. 102, 245001 14.Google Scholar
Davies, J.R. (2003). Electric and magnetic field generation and target heating by laser-generated fast electrons. Phys. Rev. E68, 056404056410.Google Scholar
Evans, R.G. (2006). Modelling short pulse, high intensity laser plasma interactions. High Energy Density Phys. 2, 3547.Google Scholar
Green, J.S., Ovchinnikov, V.M., Evans, R.G., Akli, K.U., Azechi, H., Beg, F.N., Bellei, C., Freeman, R.R., Habara, H., Heathcote, R., Key, M.H., King, J.A., Lancaster, K.L., Lopes, N.C., Ma, T., Mackinnon, A.J., Markey, K., Mcphee, A., Najmudin, Z., Nilson, P., Onofrei, R., Stephens, R., Takeda, K., Tanaka, K.A., Theobald, W., Tanimoto, T., Waugh, J., Wan Woerkom, L., Woolsey, N.C., Zepf, M., Davies, J.R. & Norreys, P.A. (2008). Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas. Phys. Rev. Lett. 100, 015003 14.Google ScholarPubMed
Gibbon, P. (2005). Short Pulse Laser Interactions with Matter – An Introduction. London: Imperial College Press.Google Scholar
Glinsky, M. (1995). Regimes of suprathemal electron transport. Phys. Plasmas 2, 27962806.Google Scholar
Hoffmann, H.H. (2008). Laser interaction with matter and heavy ion fusion. Laser Part. Beams 26, 509510.Google Scholar
Hora, H. (1988). Particle acceleration by superposition of frequency-controlled laser pulses. Nature 333, 337338.CrossRefGoogle Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects. Laser Part. Beams 27, 207222.CrossRefGoogle Scholar
Honrubia, J.J., Kaluza, M., Schreiber, J., Tsakiris, D. & Meyer-ter-Vehn, J. (2005). Laser-driven fast-electron transport in preheated foil targets. Phys. Plasmas 12, 052708052716.CrossRefGoogle Scholar
Lancaster, K.L., Green, J.S., Hey, D.S., Akli, K.U., Davies, J.R., Clarke, R.J., Freeman, R.R., Habara, H., Key, M.H., Kodama, R., Krushelnick, K., Murphy, C.D., Nakatsutsumi, M., Simpson, P., Stephens, R., Stoeckl, C., Yabuuchi, T., Zepf, M. & Norreys, P.A. (2007). Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5 × 1020W cm −2. Phys. Rev. Lett. 98, 125002 14.CrossRefGoogle Scholar
Malka, V., Faure, J., Gauduel, Y.A., Lefebvre, E., Rousse, A. & Phuoc, K.T. (2008). Principles and applications of compact laser-plasma accelerators. Nat. Phys. 4, 447453.CrossRefGoogle Scholar
Pukhov, A. & Mayer-ter-Vehn, J. (1997). Laser hole boring into over dense plasma and relativistic electron currents for fast ignition of ICF targets. Phys. Rev. Lett. 79, 26862689.Google Scholar
Ridgers, C.P., Sherlock, M., Evans, R.G., Robinson, A.P., & Kingham, R.J. (2011). Superluminal sheath-field expansion and fast-electron-beam divergence measurements in laser-solid interactions. Phys. Rev. E 83, 036404 110.Google ScholarPubMed
Robinson, A.P.L. & Sherlock, M. (2007). Magnetic collimation of fast electrons produced by ultraintense laser irradiation by structuring the target composition. Phys. Plasmas 14, 083105 17.CrossRefGoogle Scholar
Ruhl, H., Macchi, A., Mulser, P., Cornolti, & Hain, S. (1999). Collective Dynamics and Enhancement of Absorption in Deformed Targets. Phys. Rev. Lett. 82, 2095 14.Google Scholar
Sadighi-Bonabi, B., Hora, H., Riazi, E., Yazdani, E. & Sadighi, S.K. (2010). Generation of plasma blocks accelerated by nonlinear foces from ultraviolet KrF laser pulses for fast ignition. Laser Part. Beams 28, 101107.CrossRefGoogle Scholar
Silva, L.O., Fonseca, R.A., Tonge, J.W., Mori, W.B. & Dawson, J.M. (2002). On the role of the purely transverse Weibel instability in fast igniter scenarios. Phys. Plasmas 9, 24582461.CrossRefGoogle Scholar
Solodov, A.A., Anderson, K.S., Betti, R., Gotcheva, V., Myatt, J., Delettrez, J.A., Skupsky, S., Theobald, W. & Stoeckl, C. (2009). Integrated simulations of implosion, electron transport, and heating for direct-drive fast-ignition targets. Phys. Plasmas 16, 056309.CrossRefGoogle Scholar
Storm, M., Solodov, A.A., Myatt, J.F., Meyerhofr, D.D., Stoeckl, C., Mileham, C., Betti, R., Nilson, P.M., Sangster, T.C., Teheobald, W. & Guo, C. (2009). High-current, relativistic electron-beam transport in metals and the role of magnetic collimation. Phys. Rev. Lett. 102, 235004 14.CrossRefGoogle ScholarPubMed
Tahair, N.A & Hoffmann, D.H.H. (2009). Development of advanced fuel inertial fusion targets. Laser Part. Beams 15, 575587.Google Scholar
Wang, W.M., Sheng, Z.M. & Zhang, J. (2009). Electron injection into laser wakefields by colliding circularly-polarized laser pulses. Laser Part. Beams 27, 37.CrossRefGoogle Scholar
Weibel, E.S. (1995). Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 8386.CrossRefGoogle Scholar
Welch, D.R., Rose, D.V., Oliver, B.V. & Clark, R.E. (2001). Simulation techniques for heavy ion fusion chamber transport. Nucl. Instrum. Meth. Res. A464, 134139.CrossRefGoogle Scholar
Wilks, S.C. & Kruer, W.L. (2000). Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas. IEEE J. Quan. Elec. 33, 19541969.Google Scholar
Wu, S.Z., Zhou, C.T.He, X.T. & Zhu, S.P. (2009). Generation of strong magnetic fields from laser interaction with two-layer targets. Laser Part. Beams 27, 471474.CrossRefGoogle Scholar
Wu, S.Z., Zhou, C.T. & Zhu, S.P. (2010). Effect of density profile on beam control of intense laser-generated fast electrons. Phys. Plasmas 17, 063103 17.CrossRefGoogle Scholar
Yu, M.Y., Yu, W., Chen, Z.Y.Zhang, J., Yin, Y., Cao, L.H., Lu, P.X. & Xu, Z.Z. (2003). Electron acceleration by an intense short-pulse laser in underdense plasma. Phys. Plasmas 10, 24682474.Google Scholar
Yu, W., Cao, L., Yu, M.Y., Cai, H., Xu, H., Yang, X., Lei, A., Tanaka, K.A. & Kodama, R. (2009). Plasma channeling by multiple short-pulse lasers. Laser Part. Beams 27, 109114.CrossRefGoogle Scholar
Zhou, C.T., He, X.T. & Yu, M.Y. (2008). Laser-produced energetic electron transport in overdense plasmas by wire guiding. Appl. Phys. Lett. 92, 151502 13.CrossRefGoogle Scholar
Zhou, C.T., He, X.T., Cao, J.M., Wang, X.G. & Wu, S.Z. (2009). Reducing current loss of laser-driven fast electron beams propagating in solid-density plasmas. J. Appl. Phys. 105, 105, 0833111–7.CrossRefGoogle Scholar
Zhou, C.T., Wang, X.G., Wu, S.Z., Cai, H.B., Wang, F. & He, X.T. (2010 a). Density effect on relativistic electron beams in a plasma fiber. Appl. Phys. Lett. 97, 051502 13.Google Scholar
Zhou, C.T., Wu, S.Z., Cai, H.B., Chen, M., Cao, L.H., Chew, L.Y. & He, X.T. (2010 b). Hot electron transport and heating in dense plasma core by hollow guiding. Laser Part. Beams 28, 563570.CrossRefGoogle Scholar
Zhou, C.T., He, X.T. & Chew, L.Y. (2011). Intense short-pulse lasers irradiating wire and hollow plasma fibers. Opt. Lett. 36, 924926.CrossRefGoogle ScholarPubMed