Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T19:51:11.827Z Has data issue: false hasContentIssue false

Direct electron acceleration with a linearly polarized laser beam in a two-dimensional magnetized plasma channel

Published online by Cambridge University Press:  18 October 2019

Mohammad Ghorbanalilu*
Affiliation:
Department of Physics, Shahid Beheshti University, G. C., Tehran, Iran
Nasim Nozarnejad
Affiliation:
Department of Physics, Shahid Beheshti University, G. C., Tehran, Iran
*
Author for correspondence: M. Ghorbanalilu, Department of Physics, Shahid Beheshti University, G. C., Evin, Tehran, Iran. E-mail: m_alilu@sbu.ac.ir

Abstract

We examine the electron acceleration induced by an ultra-relativistic intensity laser–plasma interaction in a two-dimensional plasma channel in the presence of a self-generated transverse magnetic field. We find that the electron dynamics is strongly affected by the laser pulse polarization angle, plasma density, and magnetic field strength. We investigate in detail, the dependencies of the electron acceleration in terms of different parameters and find excellent agreement with non-magnetized plasma in the absence of the magnetic field. The numerical results show that the self-generated magnetic field plays a constructive role in the electron acceleration process. It is shown that electron acceleration is more affected by self-generated magnetic field for the laser radiations with large polarization angles. The numerical results show the maximum enhancement for electron acceleration for a laser radiation with polarization angle θ = π/2.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreev, AA and Platonov, KY (2013) Double relativistic electron-accelerating mirror. Quantum Electronics 43, 435.CrossRefGoogle Scholar
Arefiev, AV, Breizman, BN, Schollmeier, M and Khudik, VN (2012) Parametric amplification of laser-driven electron acceleration in underdense plasma. Physical Review Letters 108, 145004.CrossRefGoogle ScholarPubMed
Arefiev, AV, Khudik, VN and Schollmeier, M (2014) Enhancement of laser-driven electron acceleration in an ion channel. Physics of Plasmas 21, 033104.CrossRefGoogle Scholar
Bocoum, M, Thévenet, M, Böhle, F, Beaurepaire, B, Vernier, A, Jullien, A, Faure, J and Lopez-Martens, R (2016) Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors. Physical Review Letters 116, 185001.CrossRefGoogle ScholarPubMed
Braenzel, J, Andreev, AA, Abicht, F, Ehrentraut, L, Platonov, K and Schnürer, M (2017) Amplification of relativistic electron bunches by acceleration in laser fields. Physical Review Letters 118, 014801.CrossRefGoogle ScholarPubMed
Brandl, F, Hidding, B, Osterholz, J, Hemmers, D, Karmakar, A, Pukhov, A and Pretzler, G (2009) Directed acceleration of electrons from a solid surface by sub-10-fs laser pulses. Physical Review Letters 102, 195001.CrossRefGoogle ScholarPubMed
Breuer, J and Hommelhoff, P (2013) Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Physical Review Letters 111, 134803.CrossRefGoogle Scholar
Chen, H, Nakai, M, Sentoku, Y, Arikawa, Y, Azechi, H, Fujioka, S, Keane, C, Kojima, S, Goldstein, W, Maddox, BR, Miyanaga, N, Morita, T, Nagai, T, Nishimura, H, Ozaki, T, Park, J, Sakawa, Y, Takabe, H, Williams, G and Zhang, Z (2013) New insights into the laser produced electron-positron pairs. New Journal of Physics 15, 065010.CrossRefGoogle Scholar
Cheng, LH, Xue, JK and Liu, J (2016) Laser-driven electron acceleration in a plasma channel with an additional electric field. Physics of Plasmas 23, 053102.CrossRefGoogle Scholar
Cheng, LH, Yao, ZW, Zhang, XB and Xue, JK (2017) Net electron energy gain induced by superluminal phase velocity and subluminal group velocity of a laser in a plasma channel. Physics of Plasmas 24, 082114.CrossRefGoogle Scholar
Cipiccia, S, Islam, MR, Ersfeld, B, Shanks, RP, Brunetti, E, Vieux, G, Yang, X, Issac, RC, Wiggins, SM, Welsh, GH, Anania, M-P, Maneuski, D, Montgomery, R, Smith, G, Hoek, M, Hamilton, DJ, Lemos, NRC, Symes, D, Rajeev, PP, Shea, VO, Dias, JM and Jaroszynski, DA (2011) Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nature Physics 7, 867.CrossRefGoogle Scholar
Dimant, YS and Oppenheim, MM (2010) Interaction of plasma cloud with external electric field in lower ionosphere. Annales Geophysicae 28, 719.CrossRefGoogle Scholar
Dodin, IY and Fisch, NJ (2003) Relativistic electron acceleration in focused laser fields after above-threshold ionization. Physical Review E 68, 056402.CrossRefGoogle ScholarPubMed
Esarey, E, Schroeder, CB and Leemans, WP (2009) Physics of laser-driven plasma-based electron accelerators. Reviews of Modern Physics 81, 1229.CrossRefGoogle Scholar
Esirkepov, TZ, Bulanov, SV, Kando, M, Pirozhkov, AS and Zhidkov, AG (2009) Boosted high-harmonics pulse from a double-sided relativistic mirror. Physical Review Letters 103, 025002.CrossRefGoogle ScholarPubMed
Fedeli, L, Sgattoni, A, Cantono, G, Garzella, D, Réau, F, Prencipe, I, Passoni, M, Raynaud, M, Květoň, M, Proska, J, Macchi, A and Ceccotti, T (2016) Electron acceleration by relativistic surface plasmons in laser-grating interaction. Physical Review Letters 116, 015001.CrossRefGoogle ScholarPubMed
Flippo, K, Bartal, T, Beg, F, Chawla, S, Cobble, J, Gaillard, S, Hey, D, MacKinnon, A, Macphee, A, Nilson, P, Offermann, D, Le Pape, S and Schmitt, MJ (2010) Omega EP, laser scalings and the 60 MeV barrier: first observations of ion acceleration performance in the 10 picosecond kilojoule short-pulse regime. Journal of Physics. Conference Series 244, 022033.CrossRefGoogle Scholar
Fuchs, J, Malka, G, Adam, JC, Amiranoff, F, Baton, SD, Blanchot, N, Héron, A, Laval, G, Miquel, JL, Mora, P, Pépin, H and Rousseaux, C (1998) Dynamics of subpicosecond relativistic laser pulse self-channeling in an underdense preformed plasma. Physical Review Letters 80, 1658.CrossRefGoogle Scholar
Fuchs, J, Antici, P, d'Humieres, E, Lefebvre, E, Borghesi, M, Brambrink, E, Cecchetti, CA, Kaluza, M, Malka, V, Manclossi, M, Meyroneinc, S, Mora, P, Schreiber, J, Toncian, T, Pepin, H and Audebert, P (2006) Laser-driven proton scaling laws and new paths towards energy increase. Nature Physics 2, 48.CrossRefGoogle Scholar
Gahn, C, Tsakiris, GD, Pukhov, A, Meyer-ter-Vehn, J, Pretzler, G, Thirolf, P, Habs, D and Witte, KJ (1999) Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Physical Review Letters 83, 4772.CrossRefGoogle Scholar
Gahn, C, Tsakiris, GD, Pretzler, G, Witte, KJ, Thirolf, P, Habs, D, Delfin, C and Wahlström, CG (2002) Generation of MeV electrons and positrons with femtosecond pulses from a table-top laser system. Physics of Plasmas 9, 987.CrossRefGoogle Scholar
He, ZH, Hou, B, Nees, JA, Easter, JH, Faure, J, Krushelnick, K and Thomas, AGR (2013) High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp. New Journal of Physics 15, 053016.CrossRefGoogle Scholar
Kemp, AJ and Divol, L (2012) Interaction physics of multipicosecond petawatt laser pulses with overdense plasma. Physical Review Letters 109, 195005.CrossRefGoogle ScholarPubMed
Kiefer, D, Yeung, M, Dzelzainis, T, Foster, PS, Rykovanov, SG, Lewis, CL, Marjoribanks, RS, Ruhl, H, Habs, D, Schreiber, J, Zepf, M and Dromey, B (2013) Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet. Nature Communications 4, 1763.CrossRefGoogle ScholarPubMed
Kitagawa, Y, Sentoku, Y, Akamatsu, S, Sakamoto, W, Kodama, R, Tanaka, KA, Azumi, K, Norimatsu, T, Matsuoka, T, Fujita, H and Yoshida, H (2004) Electron acceleration in an ultraintense-laser-illuminated capillary. Physical Review Letters 92, 205002.CrossRefGoogle Scholar
Kneip, S, Nagel, SR, Bellei, C, Bourgeois, N, Dangor, AE, Gopal, A, Heathcote, R, Mangles, SPD, Marquès, JR, Maksimchuk, A, Nilson, PM, Ta Phuoc, K, Reed, S, Tzoufras, M, Tsung, FS, Willingale, L, Mori, WB, Rousse, A, Krushelnick, K and Najmudin, Z (2008) Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity. Physical Review Letters 100, 105006.CrossRefGoogle Scholar
Kneip, S, McGuffey, C, Nagel, SR, Palmer, C, Bellei, C, Schreiber, J, Huntington, C, Dollar, F, Matsuoka, T, Chvykov, V, Kalintchenko, G, Yanovsky, V, Maksimchuk, A, Ta Phuoc, K, Mangles, SPD, Krushelnick, K and Najmudin, Z (2009) Comparative study of betatron radiation from laser-wakefield and direct-laser accelerated bunches of relativistic electrons. In Jaroszynski DA and Rousse A (eds), Proceedings of SPIE on Harnessing Relativistic Plasma Waves as Novel Radiation Sources from Terahertz to X-Rays and Beyond, Vol. 7359, 73590T (Published on 6 May 2009).CrossRefGoogle Scholar
Liu, H, He, XT and Chen, SG (2004) Resonance acceleration of electrons in combined strong magnetic fields and intense laser fields. Physical Review E 66, 066409.CrossRefGoogle Scholar
Liu, B, Wang, HY, Liu, J, Fu, LB, Xu, YJ, Yan, XQ and He, XT (2013) Generating overcritical dense relativistic electron beams via self-matching resonance acceleration. Physical Review Letters 110, 045002.CrossRefGoogle ScholarPubMed
Malka, V, Faure, J, Marques, JR, Amiranoff, F, Rousseau, JP, Ranc, S, Chambaret, JP, Najmudin, Z, Walton, B, Mora, P and Solodov, A (2001) Characterization of electron beams produced by ultrashort (30 fs) laser pulses. Physics of Plasmas 8, 2605.CrossRefGoogle Scholar
Mangles, SPD, Walton, BR, Tzoufras, M, Najmudin, Z, Clarke, RJ, Dangor, AE, Evans, RG, Fritzler, S, Gopal, A, Hernandez-Gomez, C, Mori, WB, Rozmus, W, Tatarakis, M, Thomas, AGR, Tsung, FSTsung, Wei, MS and Krushelnick, K (2005) Electron acceleration in cavitated channels formed by a petawatt laser in low-density plasma. Physical Review Letters 24, 245001.CrossRefGoogle Scholar
Melikian, R (2014) Acceleration of electrons by high intensity laser radiation in a magnetic field. Laser and Particle Beams 2, 205.CrossRefGoogle Scholar
Mulser, P, Bauer, D and Ruhl, H (2008) Collisionless laser-energy conversion by anharmonic resonance. Physical Review Letters 101, 225002.CrossRefGoogle ScholarPubMed
Najmudin, Z, Tatarakis, M, Pukhov, A, Clark, EL, Clarke, RJ, Dangor, AE, Faure, J, Malka, V, Neely, D, Santala, MIK and Krushelnick, K (2001) Measurements of the inverse Faraday effect from relativistic laser interactions with an underdense plasma. Physical Review Letters 87, 215004.CrossRefGoogle ScholarPubMed
Pandari, MR, Jahangiri, F and Niknam, AR (2019) Optimizing the electron acceleration in vacuum by chirped ultrashort laser pulse using particle swarm method. Laser and Particle Beams 37(3), 242251.CrossRefGoogle Scholar
Plettner, T, Byer, RL, Colby, E, Cowan, B, Sears, CMS, Spencer, JE and Siemann, RH (2005) Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum. Physical Review Letters 95, 134801.CrossRefGoogle Scholar
Pukhov, A and Meyer-ter-Vehn, J (1996) Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation. Physical Review Letters 76, 3975.CrossRefGoogle ScholarPubMed
Qiao, B, He, XT, Zhu, SP and Zheng, CY (2005) Electron acceleration in combined intense laser fields and self-consistent quasistatic fields in plasma. Physics of Plasmas 12, 083102.CrossRefGoogle Scholar
Qiao, B, He, XT and Zhu, SP (2006) Fluid theory for quasistatic magnetic field generation in intense laser plasma interaction. Physics of Plasmas 13, 053106.CrossRefGoogle Scholar
Ripin, BH, Manka, CK, Peyser, TA, McLean, EA, Stamper, JA, Mostovych, AN, Grun, J, Kearney, K, Crawford, JR and Huba, JD (1990) Laboratory laser-produced astrophysical-like plasmas. Laser and Particle Beams 8, 183.CrossRefGoogle Scholar
Schmitz, M and Kull, HJ (2002) Single-electron model of direct laser acceleration in plasma channels. Laser Physics 12, 443.Google Scholar
Singh, KP (2004) Electron acceleration by a circularly polarized laser pulse in a plasma. Physics of Plasmas 11, 3992.CrossRefGoogle Scholar
Stark, DJ, Toncian, T and Arefiev, AV (2016) Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field. Physical Review Letters 116, 185003.CrossRefGoogle Scholar
Tabak, M, Hammer, J, Glinsky, ME, Kruer, WL, Wilks, SC, Woodworth, J, Campbell, EM, Perry, MD and Mason, RJ (1994) Ignition and high gain with ultrapowerful lasers. Physics of Plasmas 1, 1626.CrossRefGoogle Scholar
Thévenet, M, Leblanc, A, Kahaly, S, Vincenti, H, Vernier, A, Quéré, F and Faure, J (2016) Vacuum laser acceleration of relativistic electrons using plasma mirror injectors. Nature Physics 12, 355.CrossRefGoogle Scholar
Walton, BR, Mangles, SPD, Najmudin, Z, Tatarakis, M, Wei, MS, Gopal, A, Marle, C, Dangor, AE, Krushelnick, K, Fritzler, S and Malka, V (2006) Measurements of forward scattered laser radiation from intense sub-ps laser interactions with underdense plasmas. Physics of Plasmas 13, 113103.CrossRefGoogle Scholar
Wang, HY, Lin, C, Sheng, ZM, Liu, B, Zhao, S, Guo, ZY, Lu, YR, He, XT, Chen, JE and Yan, XQ (2011) Laser shaping of a relativistic intense, short Gaussian pulse by a plasma lens. Physical Review Letters 107, 265002.CrossRefGoogle ScholarPubMed
Wang, X, Zgadzaj, R, Fazel, N, Li, Z, Yi, SA, Zhang, X, Henderson, W, Chang, Y-Y, Korzekwa, R, Tsai, H-E, Pai, C-H, Quevedo, H, Dyer, G, Gaul, E, Martinez, M, Bernstein, AC, Borger, T, Spinks, M, Donovan, M, Khudik, V, Shvets, G, Ditmire, T and Downer, MC (2013) Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nature Communications 4, 1988.CrossRefGoogle ScholarPubMed
Wilks, SC, Kruer, WL, Tabak, M and Langdon, AB (1992) Absorption of ultra-intense laser pulses. Physical Review Letters 69, 1383.CrossRefGoogle ScholarPubMed
Wu, HC, Meyer-ter-Vehn, J, Fernández, J and Hegelich, BM (2010) Uniform laser-driven relativistic electron layer for coherent Thomson scattering. Physical Review Letters 104, 234801.CrossRefGoogle ScholarPubMed
Yu, MY, Yu, W, Chen, ZY, Zhang, J, Yin, Y, Cao, LH, Lu, PX and Xu, ZZ (2003) Electron acceleration by an intense short-pulse laser in underdense plasma. Physics of Plasmas 10, 2468.CrossRefGoogle Scholar
Zhang, Y, Jiao, J-L, Zhang, B, Zhang, Z-M and Gu, Y-Q (2017) GV/cm scale laser-magnetic resonant acceleration in vacuum. Laser and Particle Beams 3, 520.CrossRefGoogle Scholar