Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-20T21:54:35.908Z Has data issue: false hasContentIssue false

Differential measurement of the absolute ion yield from laser-produced C plasmas

Published online by Cambridge University Press:  09 March 2009

K. Mann
Affiliation:
Universität Kaiserslautern, FB Physik, D-6750 Kaiserslautern, Germany
K. Rohr
Affiliation:
Universität Kaiserslautern, FB Physik, D-6750 Kaiserslautern, Germany

Abstract

The ion flux produced by an obliquely incident Nd Q-switch pulse on a graphite target has been analyzed with regard to its kinetic energy, charge, and angular distribution. The laser intensity has been varied in a range between 109–5·1010 W/cm2, appropriate for many low-irradiance applications. It is observed that for ions of charge state n the emission cone of the number of ions scales with cos2n+1. The angular emission probability of the kinetic energy of the individual ions is found to be independent of their charge and scales as a cosine function. Due to the asymmetrical heating of the expanding plasma by the obliquely incident laser pulse, the maximum of emission is rotated away from the target normal toward the incoming laser, depending upon the ion's charge and the laser energy. The measured kinetic energy spectra are determined by the recombination during the plasma expansion: There are no low-energetic highly charged ions and no high-energetic lowly chargedions. If the laser energy (intensity) is enhanced, it is observed that the additional heating essentially serves only to increase the velocity of the higher charged ions; the energy of the individual singly charged ions is not altered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhsakhalyan, A.D. et al. 1988 Sov. Phys. Tech. Phys. 33, 1146.Google Scholar
Bader, H. et al. 1980 J. Phys. D: Appl. Phys. 13, L 149.CrossRefGoogle Scholar
Becay, F. & Forslund, D.W. 1982 Phys. Fluids, 25, 1675.CrossRefGoogle Scholar
Bobeth, M. & Pompe, W. 1990 Phys. Stat. Sol. (a) 117, 191.CrossRefGoogle Scholar
Boland, B.C. et al. 1968 J. Phys. B (Proc. Phys. Soc.), 1, 1180.Google Scholar
Bykovskii, Y.A. et al. 1988 Sov. Phys. JETP (2)66, 285.Google Scholar
Chowdhury, S.S. et al. 1980 J. Phys. E: Sci. Instrum. 13, 1099.CrossRefGoogle Scholar
Clement, R.M. et al. 1980 J. Phys. D: Appl. Phys. 13, 1643.CrossRefGoogle Scholar
Demtröder, W. & Jantz, W. 1972 Plasma Phys. 14, 65.Google Scholar
Dinger, R. et al. 1980 J. Phys. D: Appl. Phys. 13, 2301.CrossRefGoogle Scholar
Dinger, R. et al. 1984 j. Phys. D: Appl. Phys. 17, 1707.CrossRefGoogle Scholar
Dinger, R. et al. 1986 Laser Particle Beams, 4, 239.CrossRefGoogle Scholar
Eicher, J. et al. 1983 J. Phys. E: Sci. Instrum. 16, 903.CrossRefGoogle Scholar
Eidmann, K. 1975 Plasma Phys. 17, 121.CrossRefGoogle Scholar
Farny, J. et al. 1987 J. Tech. Phys. 28, 185.Google Scholar
Goforth, R.R. & Hammerling, P. 1976 J. Appl. Phys. 49, 3918.CrossRefGoogle Scholar
Gorbunov, A.A. & Konov, V.I. 1989 sov. Phys. Tech. Phys. 34, 1271.Google Scholar
Green, T.S. 1970 Plasma Phys. 12, 877.CrossRefGoogle Scholar
Griem, H.R. 1988 J. Quantum Spectrosc. Radial. Transfer 40, 403.CrossRefGoogle Scholar
Gupta, P.D. et al. 1984 j Appl. Phys. 55, 701.CrossRefGoogle Scholar
Gupta, P.D. et al. 1986 Phys. Rev. A 33, 3531.CrossRefGoogle Scholar
Gurevich, U.A. et al. 1973 Sov. Phys. JETP 36, 274.Google Scholar
Hercules, D.M. et al. 1982 Anal. Chem. 54, 280A.CrossRefGoogle Scholar
Kunz, I. 1990 PhD thesis, TH Darmstadt, to be published.Google Scholar
Kunz, I. & Mulser, P. 1982 IAP Report 101, TH Darmstadt.Google Scholar
Latyshev, S.V. & Rudskoj, I.V. 1985 Sov. J. Plasma Phys. 11, 669.Google Scholar
Matzen, M.K. & Peariman, J.S. 1979 Phys. Fluids 22, 449.CrossRefGoogle Scholar
Mattioli, M. 1971 Plasma Phys. 13, 19.CrossRefGoogle Scholar
Mulser, P. 1971 Plasma Phys. 13, 1007.CrossRefGoogle Scholar
Mulser, P. et al. 1973 Phys. Rep. 6, 187.CrossRefGoogle Scholar
Neifeld, R.A. et al. 1988 Appl. Phys. Lett. 53, 703.CrossRefGoogle Scholar
Oron, M. & Paiss, Y. 1973 Rev. Sci. Instrum. 44, 1293.CrossRefGoogle Scholar
Rohr, K. et al. 1989 Laser Particle Beams 7, 157.CrossRefGoogle Scholar
Rohr, K. & Thoemmes, R. 1990 Surf. Interface Anal. 15, 5.CrossRefGoogle Scholar
Rupp, A. & Rohr, K. 1991 j. Phys. D: Appl. Phys. 24, 2229.CrossRefGoogle Scholar
Sinha, & Gopi, . 1979 Appl. Phys. Lett. 35, 11.CrossRefGoogle Scholar
Tallents, G.J. & Luther-Davis, B. 1982 J. Phys. D: Appl. Phys. 15, L125.CrossRefGoogle Scholar
Vertez, A. et al. 1989 Int. J. Mass Spectrum Ion Proc. 94, 63.CrossRefGoogle Scholar