Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T19:06:24.602Z Has data issue: false hasContentIssue false

The comeback of shock waves in inertial fusion energy

Published online by Cambridge University Press:  22 March 2011

Shalom Eliezer*
Affiliation:
Institute of Nuclear Fusion, Polytechnic University of Madrid, Madrid, Spain
Jose Maria Martinez Val
Affiliation:
Institute of Nuclear Fusion, Polytechnic University of Madrid, Madrid, Spain
*
Address correspondence and reprint requests to: Shalom Eliezer, Institute of Nuclear Fusion, Polytechnic University of Madrid, Madrid, Spain. E-mail: shalom.eliezer@gmail.com

Abstract

The shock waves in laser plasma interaction have played an important role in the study of inertial fusion energy (IFE) since the 1970's and perhaps earlier. The interaction of laser, or any other high power beam, induced shock waves with matter was one of the foundations of the target design in IFE. Even the importance of shock wave collision was studied and its importance forgotten. In due course, the shock waves were taken as granted and became “second fiddle” in IFE scenario. The analysis of the shock wave in the context of IFE is revived in this paper. At the forefront of the past decade the concept of fast ignition was introduced. The different ideas of fast ignition are summarized with special emphasis on shock wave fast ignition. The ignition is achieved by launching a shock wave during the final stages of the implosion. In this paper, a possible instability in the propagation of the igniting shock wave is analyzed. The idea of combining the fast ignition fusion with an impact shock wave is suggested and analyzed. This is achieved by launching a shock wave by an accelerated foil during the final stage of the implosion in order to ignite the compressed fuel. In this scheme, like other fast ignition schemes, a significant reduction of the driver energy in comparison with standard IFE scenarios is required for the same high gain fusion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. & Meyer-ter-Vehn, J.M. (2004). The Physics of Inertial Fusion. Oxford: Clarendon Press.Google Scholar
Azechi, H., Jitsuno, T., Kanabe, T., Katayama, M., Mima, K., Miyanaga, N., Nakai, M., Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norreys, P.A., Setsuhara, Y., Tagagi, M., Yamanaka, M. & Yamanaka, C. (1991). High density compression experiments at ILE. Laser Part. Beams 9, 193207.CrossRefGoogle Scholar
Azechi, H., Sakaiya, T., Watari, T., Karasik, M., Saito, H., Ohtani, K., Hosoda, H., Shiraga, H., Nakai, M., Shigemori, K., Fujioka, S., Murakami, M., Johzaki, T., Gardner, J., Colombant, D.G., Bares, J.W., Velikovich, A.L., Aglitskiy, Y., Weaver, J., Obenchain, S., Eliezer, S., Kodama, R., Norimatsu, T., Fujita, H., Mima, K. & Kan, H. (2009). Experimental evidence of impact ignition: 100–fold increase of neutron yield by impactor collision, Phys. Rev. Lett. 102, 235002/1–4.Google Scholar
Basov, N.G., Guskov, S.Y. & Feoktistov, L.P. (1992). Thermo–nuclear gain of ICF targets with direct heating of the ignitor. J. Soviet Laser Res. 13, 396399.CrossRefGoogle Scholar
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001/1–4.Google Scholar
Caruso, A. & Strangio, C. (2001). Studies on non–conventional high gain target design for ICF. Laser Part. Beams 19, 295308.CrossRefGoogle Scholar
Cauble, R., Phillion, D.W., Hoover, T.J., Holmes, N.C., Kilkenny, J.D. & Lee, R.W. (1993). Demonstration of 0.75 Gbar planar shocks in X–ray driven colliding foils. Phys. Rev. Lett. 70, 21022105.Google Scholar
Deutsch, C. & Tahir, N.A. (1995). Fragmentation and stopping of heavy cluster ions in a lithium target. Laser Part. Beams 13, 211219.Google Scholar
Eliezer, S. & Martinez Val, J.M. (1998). Proton–boron11 fusion reactions induced by heat detonation burning waves. Laser Part. Beams 16, 581598.Google Scholar
Eliezer, S. & Ricci, R.A. (1991). High–Pressure Equations of State: Theory and Applications, Enrici Fermi International School of Physics, 1989. Amsterdam: North–Holland.Google Scholar
Eliezer, S. (2002). The Interaction of High Power Lasers with Plasmas. Bristol, UK: Institute of Physics.Google Scholar
Eliezer, S., Ghatak, K. & Hora, H. (2002). Fundamentals of equation of State. Singapore: World Scientific.Google Scholar
Eliezer, S., Martinez Val, J.M. & Deutsch, C. (1995). Inertial fusion targets driven by cluster ion beams: The hydrodynamic approach. Laser Part. Beams 13, 4369.Google Scholar
Eliezer, S., Murakami, M. & Martinez Val, J.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 18.CrossRefGoogle Scholar
Guskov, S.Y. (2001). Direct ignition of inertial fusion targets by a laser–plasma ion stream. Quan. Electr. 31, 885890.Google Scholar
Hora, H., Badziak, J., Glowaks, S., Jablonski, S., Skladanovski, Z., Osman, F., Cang, Y., Zhang, J., Miley, G.H., Peng, H.S., He, X.T., Zhang, W.Y., Rohlena, K., Ullschmied, J. & Jungwirth, K. (2005). Fusion energy from plasma block ignition. Laser Part. Beams 23, 423432.CrossRefGoogle Scholar
Jackel, S., Salzmann, D., Krumbein, A. & Eliezer, S. (1983). Multi–shock compression of solid planar targets using tailored laser pulses. Phys. Plasmas 26, 31383147.Google Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., et al. (2001). Fast ignition of ultra–high plasma as a step towards laser fusion ignition. Nature 412, 798802.CrossRefGoogle Scholar
Lafon, M., Ribeyre, X. & Schurtz, G (2010). Gain curves and hydrodynamic modeling for shock ignition. Phys. Plasmas 17, 052704/1–14.CrossRefGoogle Scholar
Leon, P.T., Eliezer, S., Piera, M. & Martinez Val, J.M. (2005). Inertial fusion features in degenerate plasmas. Laser Part. Beams 23, 193198.CrossRefGoogle Scholar
Lindl, J.D. (1997). Inertial Confinement Fusion: The Quest for Ignition and High Gain Using Indirect Drive. New York: Springer.Google Scholar
Martinez Val, J.M. & Piera, M. (1997). Fusion burning waves ignited by cumulation jets. Fusion Tech. 32, 131151.CrossRefGoogle Scholar
Mima, K., Murakami, M., Nakai, S. & Eliezer, S. (2009). Applications of Laser–Plasma Interactions (Eliezer, S. & Mima, K., eds.). Boca Raton: CRC Press.Google Scholar
Moses, E.I. (2009). Ignition on the national igniting facility: A path towards inertial fusion energy. Nucl. Fusion 49, 104022/1–9.Google Scholar
Murakami, M., Nagatomo, H., Azechi, H., Ogando, F., Perlado, M.& Eliezer, S. (2006). Innovative ignition scheme for ICF impact fast ignition. Nucl. Fusion 46, 99103.CrossRefGoogle Scholar
Norreys, P.A., Allot, R., Clarke, R.J., Colliers, J., Neely, D., Rose, S.J., Zepf, M., Santala, M., Bell, A.R., Krushelnick, K., Dangor, A.E., Woolsey, N.C., Evans, R.G., Habara, H., Norimatsu, T. & Kodama, R. (2000). Experimental studies of the advanced fast ignitor scheme. Phys. Plasmas 7, 37213726.CrossRefGoogle Scholar
Nuckolls, J.H., Wood, L., Thiessen, A. & Zimmermann, G.B. (1972). Laser compression of matter to super–high densities: Thermonuclear (CTR) applications. Nature 239, 139142.Google Scholar
Ribeyre, X., Schurtz, G., Galera, S. & Weber, S. (2009). Plasma Phys. Contr. Fusion 51, 015013/1–19.Google Scholar
Rosen, M.D. (1999). The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial. Phys. Plasma 5, 16901699.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser–accelerated proton beams. Phys. Rev. Lett. 86, 436439.Google Scholar
Son, S. & Fisch, N.J. (2004). Aneutronic fusion in a degenerate plasma. Phys. Lett A. 329, 76.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E., Perry, M.D. & Mason, R. J. (1994). Ignition and high gain with ultra–powerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Tahir, N.A., Lutz, K.J., Geb, O. & Hoffmann, D.H.H. (1997). Inertial confinement fusion using hohlraum radiation generated by heavy–ion clusters. Phys. Plasmas 4, 796816.Google Scholar
Van Kessel, C.G.M. & Sigel, R. (1974). Observation of laser–driven shock waves in solid hydrogen, Phys. Rev. Lett. 33, 10201023.CrossRefGoogle Scholar
Velarde, G. & Carpintero-Santamaria, N. (2007). Inertial Confinement Nuclear Fusion: A Historical Approach by its Pioneers. UK: Foxwell and Davies.Google Scholar
Velarde, P., Ogando, F., Eliezer, S., Martinez Val, J.M., Perlado, J. M. & Murakami, M. (2005). Comparison between jet collision and shell impact concepts for fast ignition. Laser Part. Beams 23, 4346.CrossRefGoogle Scholar
Zeldovich, Y.B. & Raizer, Y.P. (1966). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic Press.Google Scholar