Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T14:25:56.370Z Has data issue: false hasContentIssue false

An initial design of hohlraum driven by a shaped laser pulse

Published online by Cambridge University Press:  20 July 2010

Ke Lan
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Peijun Gu
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Guoli Ren
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Xin Li*
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Changshu Wu
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Wenyi Huo
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Dongxian Lai
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Xian-Tu He
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
*
Address correspondence and reprint requests to: Xin Li, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-14, Beijing, 100088, People's Republic of China. E-mail: li_xin@iapcm.ac.cn

Abstract

In this paper, the plasma-filling model was extrapolated to the case of a hohlraum driven by a shaped laser pulse, and this extended model was used to obtain an initial design of the hohlraum size. A density criterion of ne = 0.1 was used for designing hohlraums which have low plasma filling with maximum achievable radiation. The method was successfully used to design a half hohlraum size with a three-step laser pulse on SGIII prototype and a U hohlraum size with shaped laser pulse for ignition. It was shown that the extended model with the criterion can provide reasonable initial design of a hohlraum size for optimal designing with a two-dimensional code.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleksandrova, I.V., Belolipeskiy, A.A., Koresheva, E.R. & Tolokonnikov, S.M. (2008). Survivability of fuel lasers with a different structure under conditions of the environmental effects: Physical concepts and modeling results. Laser Part. Beams 26, 643648.CrossRefGoogle Scholar
Atzeni, S. & Meyer-Ter-Vehn, J. (2004). The Physics of Inertial Fusion. Oxford: Oxford Science Press.CrossRefGoogle Scholar
Borisenko, N.G., Bugrov, A.E., Burdonskiy, I.N., Fasakhov, I.K., Gavrilov, V.V., Goltsov, A.Y., Gromov, A.I., Khalenkov, A.M., Kovalskii, N.G., Merkuliev, Y.A., Petryakov, V.M., Putilin, M.V., Yankovskii, G.M. & Zhuzhukalo, E.V. (2008). Physical processes in laser interaction with porous low-density materials. Laser Part. Beams 26, 537543.CrossRefGoogle Scholar
Bret, A. & Deutsch, C. (2006). Density gradient effects on beam plasma linear instabilities for fast ignition scenario. Laser Part. Beams 24, 269273.CrossRefGoogle Scholar
Chatain, D., Perin, J.P., Bonnay, P., Bouleau, E., Chichoux, M., Communal, D., Manzagol, J., Viargues, F., Brisset, D., Lamaison, V. & Paquignon, G. (2008). Cryogenic systems for inertial fusion energy. Laser Part. Beams 26, 517523.CrossRefGoogle Scholar
Deutsch, C., Bret, A., Firpo, M.C., Gremillet, L., Lefebvre, E. & Lifschitz, A. (2008). Onset of coherent electromagnetic structures in the relativistic electron beam deuterium-tritium fuel interaction of fast ignition concern. Laser Part. Beams 26, 157165.CrossRefGoogle Scholar
Dewald, E.L., Suter, L.J., Landen, O.L., Holder, J.P., Schein, J., Lee, F.D., Campbell, K.M., Weber, F.A., Pellinen, D.G., Schneider, M.B., Celeste, J.R., Mcdonald, J.W., Foster, J.M., Niemann, C.J.Mackinnon, A., Glenzer, S.H., Young, B.K., Haynam, C.A., Shaw, M.J., Turner, R.E., Froula, D., Kauffman, R.L., Thomas, B.R., Atherton, L.J., Bonanno, R.E., Dixit, S.N., Eder, D.C., Holtmeier, G., Kalantar, D.H., Koniges, A.E., Macgowan, B.J., Manes, K.R., Munro, D.H., Murray, J.R., Parham, T.G., Piston, K., Van Wonterghem, B.M., Wallace, R.J., Wegner, P.J., Whitman, P.K., Hammel, B.A. & Moses, E.I. (2005). Radiation-driven hydrodynamics of high-Z hohlraums on the national ignition facility. Phys. Rev. Lett. 95, doi: 10.1103/PhysRevLett.95.215004.CrossRefGoogle Scholar
Duan, Q., Chang, T., Zhang, W., Wang, G., Wang, C. & Zhu, S. (2002). Two-dimensional numerical simulation of laser irradiated gold disk targets. Chinese J. Comp. Phys. 19, 5761.Google Scholar
Eliezer, S., Murakami, M. & Val, J.M.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.CrossRefGoogle Scholar
Feng, T.G., Lai, D.X. & Xu, Y. (1999). An artificial-scattering iteration method for calculating multi-group radiation transfer problem. Chinese J. Comput. Phys. 16, 199205.Google Scholar
Foldes, I.B. & Szatmari, S. (2008). On the use of KrF lasers for fast ignition. Laser Part. Beams 26, 575582.CrossRefGoogle Scholar
Hinkel, D.E., Callahan, D.A., Langdon, A.B., Langer, S.H., Still, C.H. & Williams, E.A. (2008). Analyses of laser-plasma interactions in National Ignition Facility ignition targets. Phys. Plasmas 15, 056314.CrossRefGoogle Scholar
Hoffmann, D.H.H. (2008). Intense laser and particle beams interaction physics toward inertial fusion. Laser Part. Beams 26, 295296.Google Scholar
Holmlid, L., Hora, H., Miley, G. & Yang, X. (2009). Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets. Laser Part. Beams 27, 529532.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Imasaki, K. & Li, D. (2007). An approach to hydrogen production by inertial fusion energy. Laser Part. Beams 25, 99105.CrossRefGoogle Scholar
Koresheva, E.R., Aleksandrova, I.V., Koshelev, E.L., Nikitenko, A.I., Timasheva, T.P., Tolokonnikov, S.M., Belolipetskiy, A.A., Kapralov, V.G., Sergeev, V.T., Blazevic, A., Weyrich, K., Varentsov, D., Tahir, N.A., Udrea, S. & Hoffmann, D.H.H. (2009). A study on fabrication, manipulation and survival of cryogenic targets required for the experiments at the Facility for Antiproton and Ion Research: FAIR. Laser Part. Beams 27, 255272.CrossRefGoogle Scholar
Li, X., Lan, K., Meng, X., He, X., Lai, D. & Feng, T. (2010). Study on Au + U + Au sandwich hohlraum wall for ignition targets. Laser Part. Beams 28, doi:10.1017/S0263034609990590.CrossRefGoogle Scholar
Lindl, J.D. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.CrossRefGoogle Scholar
Lindl, J.D., Amendt, P., Berger, R.L., Glendinning, S.G., Glenzer, S.H., Haan, S.W., Kauffman, R.L., Landen, O.L. & Suter, L.J. (2004). The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339491.CrossRefGoogle Scholar
Mcdonald, J.W., Suter, L.J., Landen, O.L., Foster, J.M., Celeste, J.R., Holder, J.P., Dewald, E.L., Schneider, M.B., Hinkel, D.E., Kauffman, R.L., Atherton, L.J., Bonanno, R.E., Dixit, S.N., Eder, D.C., Haynam, C.A., Kalantar, D.H., Koniges, A.E., Lee, F.D., Macgowan, B.J., Manes, K.R., Munro, D.H., Murray, J.R., Shaw, M.J., Stevenson, R.M., Parham, T.G., Van Wonterghem, B.M., Wallace, R.J., Wegner, P.J., Whitman, P.K., Young, B.K., Hammel, B.A. & Moses, E.I. (2006). Hard X-ray and hot electron environment in vacuum hohlraums at the National Ignition Facility. Phys. Plasmas 13, doi: 10.1063/1.2186927.CrossRefGoogle Scholar
Pei, W. (2007). The construction of simulation algorithms for laser fusion. Commun. Comput. Phys. 2, 255270.Google Scholar
Ramis, R., Ramirez, J.&Schurtz, G. (2008). Implosion symmetry of laser-irradiated cylindrical targets. Laser Part. Beams 26, 113126.CrossRefGoogle Scholar
Rodriguez, R., Florido, R., Gll, J.M., Rubiano, J.G., Martel, P. & Minguez, E. (2008). RAPCAL code: A flexible package to compute radiative properties for optically thin and thick low and high-Z plasmas in a wide range of density and temperature. Laser Part. Beams 26, 433448.CrossRefGoogle Scholar
Schneider, M.B., Hinkel, D.E., Landen, O.L., Froula, D.H., Heeter, R.F., Langdon, A.B., May, M.J., Mcdonald, J., Ross, J.S., Singh, M.S., Suter, L.J., Widmann, K. & Young, B.K. (2006). Plasma filling in reduced-scale hohlraums irradiated with multiple beam cones. Phys. Plasmas 13, doi: 10.1063/1.2370697.CrossRefGoogle Scholar
Sigel, R., Pakula, R., Sakabe, S. & Tsakiris, G.D. (1988). X-ray generation in a cavity heated by 1.3 or 0.44 mm laser light III Comparison of the experimental results with theoretical predictions for x-ray confinement. Phys. Rev. A 38, 57795785.CrossRefGoogle ScholarPubMed
Strangio, C., Caruso, A. & Aglione, M. (2009). Studies on possible alternative schemes based on two-laser driver for inertial fusion energy applications. Laser Part. Beams 27, 303309.CrossRefGoogle Scholar
Suter, L.J., Kauffman, R.L., Darrow, C.B., Hauer, A.A., Kornblum, H., Landen, O.L., Orzechowski, T.J., Phillion, D.W., Porter, J.L., Powers, L.V., Richard, A., Rosen, M.D., Thiessen, A.R. & Wallace, R. (1996). Radiation drive in laser-heated hohlraums. Phys. Plasmas 3, 2057.CrossRefGoogle Scholar
Vandenboomgaerde, M., Bastian, J., Casner, A., Galmiche, D., Jadaud, J.-P., Laffite, S., Liberatore, S., Malinie, G. & Philippe, F. (2007). Prolate-spheroid (“rugby-shaped”) hohlraum for inertial confinement fusion. Phys. Rev. Lett. 99, doi: 10.1103/PhysRevLett.99.065004.CrossRefGoogle ScholarPubMed
Winterberg, F. (2008). Lasers for inertial confinement fusion driven by high explosives. Laser Part. Beams 26, 127135.CrossRefGoogle Scholar
Yang, H., Nagai, K., Nakai, N. & Norimatsu, T. (2008). Thin shell aerogel fabrication for FIREX-I targets using high viscosity (phloroglucinol carboxylic acid)/formaldehyde solution. Laser Part. Beams 26, 449453.CrossRefGoogle Scholar