Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T11:12:19.560Z Has data issue: false hasContentIssue false

Thermonuclear burn of DT and DD fuels using three-temperature model: Non-equilibrium effects

Published online by Cambridge University Press:  01 August 2012

Bishnupriya Nayak*
Affiliation:
Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai, India
S.V.G. Menon
Affiliation:
Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai, India
*
Address correspondence and reprint requests to: Bishnupriya Nayak, Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. E-mail: bnayak@barc.gov.in

Abstract

Conditions for thermonuclear ignition are determined by three parameters: fuel density, temperature and hot-spot size. A simple three temperature model is developed to calculate the critical burn-up parameter or the minimum ρR product. Extensive results obtained are compared with earlier one temperature model for DT and DD fuels. While the two approaches are found to provide similar results for DT fuel except at low temperature regime (~10 keV), three temperature modeling is found to be necessary for DD fuel. This is argued to be due to the lower fusion reactivity and energy production in DD reactions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. (1986). 2-D Lagrangian studies of symmetry and stability of laser fusion targets. Comp. Phys. Commn. 43, 107124.CrossRefGoogle Scholar
Atzeni, S. (1995). Themonuclear burn performance of volume-ignited and centrally ignited bare deuterium-tritium microspheres. Jpn. J. Appl. Phys. 34, 19801992.CrossRefGoogle Scholar
Avrorin, E.N., Feoktistov, L.P. & Shibarshov, L.I. (1980). Ignition criterion for pulsed fusion targets. Sov. J. Plasma Phys. 6, 527531.Google Scholar
Basko, M.M. (1990). Spark and volume ignition of DT and D 2 microspheres. Nuclear Fusion 30, 24432452.CrossRefGoogle Scholar
Brueckner, K.A. & Jorna, S. (1974). Laser-driven fusion. Rev. Mod. Phys. 46, 325367.CrossRefGoogle Scholar
Duderstadt, J.J. & Moses, G.A. (1982). Inertial Confinement Fusion. Wiley-Interscience Publication.Google Scholar
Eliezer, S., Henis, Z., Martinez-Val, J. & Vorobeichik, I. (2000). Effects of different nuclear reactions on internal tritium breeding in deuterium fusion. Nucl. Fusion 40, 195207.CrossRefGoogle Scholar
Fraley, G.S., Linnebur, E.J., Mason, R. & Morse, R.L. (1974). Thermonuclear burn chracteristics of compressed deuterium-tritium microsperes. Phys. of Fluids 17, 474489.CrossRefGoogle Scholar
Frolov, A.M. (1998). The thermonuclear burn-up in deuterium-tritium mixtures and hydrides of light elements. Plasma Phys. Control. Fusion 40, 14171428.CrossRefGoogle Scholar
Frolov, A.M., Smith, V.H. Jr. & Smith, G.T. (2002). Deuterides of light elements: low-temperature thermonuclear burn-up and applications to thermonuclear fusion problems High-energy ions produced in explosions of superheated atomic cluster. Can. J. Physics 80, 4364.CrossRefGoogle Scholar
Gsponer, A. & Hurni, J.P. (1999). Comment on “Deuterium-tritium fusion reactors without external fusion breeding” by Eliezer, S. et al. Physics Letters A 253, 119121.CrossRefGoogle Scholar
Gus'kov, S.Y., Krokhin, O.N. & Rozanov, V.B. (1976). Similarity solution of thermonuclear burn wave with electron and α-conductivities. Nucl. Fusion 16, 957962.CrossRefGoogle Scholar
Kidder, R.E. (1976). Energy gain of laser-compressed pellets: A simple model calculation. Nucl. Fusion 16, 405408.CrossRefGoogle Scholar
Kidder, R.E. (1979). Laser-driven isentropic hollow-shell implosions: The problem of ignition. Nucl. Fusion 19, 223234.CrossRefGoogle Scholar
Martinez-Val, J.M., Eliezer, S., Henis, Z. & Piera, M. (1998). A tritium catalytic fusion reactor concept. Nuclear Fusion 38, 16511664.CrossRefGoogle Scholar
Meyer-ter vehn, J. (1982). On energy gain of fusion targets: The model of Kidder and Bodner improved. Nucl. Fusion 22, 561565.CrossRefGoogle Scholar
Spitzer, L. (1962). Physics of fully ionized gases. Interscience, New York.Google Scholar
Tahir, N.A. & Long, K.A. (1983). Numerical simulation and theoretical analysis of implosion, ignition and burn of heavy-ion-beam reactor-size ICF targets. Nucl . Fusion 23, 887916.CrossRefGoogle Scholar
Tahir, N.A., Long, K.A. & Laing, E.W. (1986). Method of solution of a three-temperature plasma model and its application to inertial confinement fusion target design studies. J. Appl. Phys. 60, 898903.CrossRefGoogle Scholar
Zel'dovich, Y.B. & Raizer, Y.P. (1966). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic Press, New York, Volume-I.Google Scholar