Hostname: page-component-cd4964975-8cclj Total loading time: 0 Render date: 2023-03-27T15:15:33.242Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

TEM modes influenced electron acceleration by Hermite–Gaussian laser beam in plasma

Published online by Cambridge University Press:  29 April 2016

Harjit Singh Ghotra
Affiliation:
Department of Physics, Lovely Professional University, G. T. Road, Phagwara-144411, Punjab, India
Niti Kant*
Affiliation:
Department of Physics, Lovely Professional University, G. T. Road, Phagwara-144411, Punjab, India
*
Address correspondence and reprint requests to: N. Kant, Department of Physics, Lovely Professional University, G. T. Road, Phagwara-144411, Punjab, India. E-mail: nitikant@yahoo.com

Abstract

Electron acceleration by a circularly polarized Hermite–Gaussian (HG) laser beam in the plasma has been investigated theoretically for the different transverse electromagnetic (TEM) mode indices (m, n) as (0, 1), (0, 2), (0, 3), and (0, 4). HG laser beam possesses higher trapping force compared with a standard Gaussian beam owing to its propagation characteristics during laser–electron interaction. A single-particle simulation indicates a resonant enhancement in the electron acceleration with HG laser beam. We present the intensity distribution for different TEM modes. We also analyze the dependence of beam width parameter on electron acceleration distance, which effectively influences the electron dynamics. Electron acceleration up to longer distance is observed with the lower modes. However, the higher electron energy gain is observed with higher modes at shorter distance of propagation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alpmann, C., Scholer, C. & Denz, C. (2015). Elegant Gaussian beams for enhanced optical manipulation. Appl. Phys. Lett. 106, 241102.CrossRefGoogle Scholar
Belafhal, A. & Ibnchaikh, M. (2000). Propagation properties of Hermite-cosh-Gaussian laser beams. Opt. Commun. 186, 269276.CrossRefGoogle Scholar
Dabu, R. (2015). High power femtosecond lasers at ELI-NP. AIP Conf. Proc. 1645, 219227.CrossRefGoogle Scholar
Erikson, W.L. & Singh, S. (1994). Polarization properties of Maxwell Gaussian beams. Phys. Rev. E 49, 57785786.CrossRefGoogle Scholar
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291285.CrossRefGoogle Scholar
Fortin, P.L., Piche, M. & Varin, C. (2010). Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization. J. Phys. B: At. Mol. Opt. Phys. 43, 025401.CrossRefGoogle Scholar
Feng, H., Wei, Y., Peixiang, L. & Han, X. (2004). Electron acceleration by a focused Gaussian laser pulse in vacuum. Laser Sci.Tech. 6, 24922495.Google Scholar
Flacco, A., Vieira, J., Lifschitz, A., Sylla, F., Kahaly, S., Veltcheva, M., Silva, L.O. & Malka, V. (2015). Persistence of magnetic field driven by relativistic electrons in plasma. Nat. Phys. 11, 409413.CrossRefGoogle Scholar
Geddes, C.G.R., Toth, C., Tilborg, J.V., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 438441.CrossRefGoogle ScholarPubMed
Ghotra, H.S. & Kant, N. (2015 a). Electron acceleration to GeV energy by a chirped laser pulse in vacuum in the presence of azimuthal magnetic field. App. Phys. B 120, 141147.CrossRefGoogle Scholar
Ghotra, H.S. & Kant, N. (2015 b). Sensitiveness of axial magnetic field on electron acceleration by a radially polarized laser pulse in vacuum. Opt. Commun. 356, 118122.CrossRefGoogle Scholar
Ghotra, H.S. & Kant, N. (2015 c). Electron acceleration by a chirped laser pulse in vacuum under influence of magnetic field. Opt. Rev. 22, 539543.CrossRefGoogle Scholar
Ghotra, H.S. & Kant, N. (2016 a). Electron injection for enhanced energy gain by a radially polarized laser pulse in vacuum in the presence of magnetic wiggler. Phys. Plasmas 23, 013101.CrossRefGoogle Scholar
Ghotra, H.S. & Kant, N. (2016 b). Polarization effect of a Gaussian laser pulse on magnetic field influenced electron acceleration in vacuum. Opt. Commun. 365, 231236.CrossRefGoogle Scholar
Gupta, D.N., Kant, N., Kim, D.E. & Suk, H. (2007). Electron acceleration to GeV energy by a radially polarized laser. Phys. Lett. A 368, 402407.CrossRefGoogle Scholar
Gupta, D.N. & Ryu, C.M. (2005). Electron acceleration by a circularly polarized laser pulse in the presence of an obliquely incident magnetic field in vacuum. Phys. Plasmas 12, 053103.CrossRefGoogle Scholar
Hartemann, F.V., Fochs, S.N., Sage, G.P.L., Luhmann, N.C. Jr., Woodworth, J.G., Perry, M.D., Chen, Y.J. & Kerman, A.K. (1995). Nonlinear ponderomotive scattering of relativistic electrons by an intense laser field at focus. Phys. Rev. E 51, 48334843.CrossRefGoogle ScholarPubMed
Hooker, S.M. (2013). Developments in laser-driven plasma accelerators. Nat. Photonics 7, 775782.CrossRefGoogle Scholar
Leemans, W.P., Nagler, B., Gonsalves, A.J., Toth, C., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B. & Hooker, S.M. (2006). GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696699.CrossRefGoogle Scholar
Moore, C.I., Ting, A., Jones, T., Briscoe, E., Hafizi, B., Hubbard, R.F. & Sprangle, P. (2001). Measurements of energetic electrons from the high-intensity laser ionization of gases. Phys. Plasmas 8, 2481.CrossRefGoogle Scholar
Nanda, V. & Kant, N. (2014). Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition. Phys. Plasmas 21, 042101.CrossRefGoogle Scholar
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulse. Laser Part. Beams 26, 5159.CrossRefGoogle Scholar
Saberi, H. & Maraghechi, B. (2015). Enhancement of electron energy during vacuum laser acceleration in an inhomogeneous magnetic field. Phys. Plasmas 22, 033115.CrossRefGoogle Scholar
Salamin, Y.I. (2006). Electron acceleration from rest in vacuum by an intense Gaussian laser beam. Phys. Rev. A 73, 043402.CrossRefGoogle Scholar
Sharma, A. & Tripathi, V.K. (2009). Ponderomotive acceleration of electrons by a laser pulse in magnetized plasma. Phys. Plasmas 16, 043103.CrossRefGoogle Scholar
Sprangle, P., Hafizi, B., Penano, J.R., Hubbard, R.F., Ting, A., Zigler, A. & Antonsen, T.M. (2000). Stable laser-pulse propagation in plasma channels for GeV electron acceleration. Phys. Rev. Lett. 85, 51105113.C36.CrossRefGoogle ScholarPubMed
Turcu, I.C.E., Balascuta, S., Negoita, F., Jaroszynski, D. & Mckenna, P. (2015). Strong field physics and QED experiment with ELI-NP 2X10PW laser beam. AIP Conf. Proc. 1645, 416420.CrossRefGoogle Scholar
York, A.G. & Milchberg, H.M. (2008). Direct acceleration of electrons in a corrugated plasma waveguide. Phys. Rev. Lett. 100, 195001.CrossRefGoogle Scholar