Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-14T21:43:46.110Z Has data issue: false hasContentIssue false

Search for stable propagation of intense femtosecond laser pulses in gas

Published online by Cambridge University Press:  17 December 2007

A. Giulietti
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Italy
M. Galimberti
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Italy
A. Gamucci
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Italy
D. Giulietti*
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Italy Department of Physics, University of Pisa, Pisa, Italy
L.A. Gizzi
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Italy
P. Koester
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Italy
L. Labate
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Italy
P. Tomassini
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Italy
T. Ceccotti
Affiliation:
CEA-DSM/DRECAM/SPAM, Gif sur Yvette Cedex, France
P. D'Oliveira
Affiliation:
CEA-DSM/DRECAM/SPAM, Gif sur Yvette Cedex, France
T. Auguste
Affiliation:
CEA-DSM/DRECAM/SPAM, Gif sur Yvette Cedex, France
P. Monot
Affiliation:
CEA-DSM/DRECAM/SPAM, Gif sur Yvette Cedex, France
P. Martin
Affiliation:
CEA-DSM/DRECAM/SPAM, Gif sur Yvette Cedex, France
*
Address correspondence and reprint request to: A. Giulietti, Intense Laser Laboratory, IPCF-CNR, Pisa, Italy. E-mail: antonio.giulitti@ipcf.cnr.it

Abstract

We report and discuss experimental results on the propagation of CPA pulses of moderately relativistic intensity in gas: they evidence the effects of the precursor pedestals of the main pulse. Details of great interest were observed for the first time with high quality femtosecond 90-degree interferometry. The interferometric data are also correlated with imaging and spectroscopy data of laser pulse transmitted through the gas. The most relevant physical features are confirmed by a numerical code which simulates the laser pulse propagation self-consistently with the ionization of the gas. We found that in this regime, the propagation of the intense femtosecond pulse is basically stable apart from very weak refractive effects. In order to allow propagation at fixed intensity along an optical path larger than the Rayleigh range, we performed a first successful attempt at producing hollow plasma channels able to guide the pulse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ammosov, M.V., Delone, M.B. & Kraïnov, V.P. (1986). Tunnel ionization of complex atoms and atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191.Google Scholar
Benattar, R., Popovics, C. & Sigel, R. (1979). Polarized light interferometer for laser fusion studies. Rev. Sci. Instrum. 50, 1583.CrossRefGoogle ScholarPubMed
Brambrink, E., Roth, M., Blazevic, A. & Schlegel, T. (2006). Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration. Laser Part. Beams 24, 163168.CrossRefGoogle Scholar
Chen, H. & Wilks, S.C. (2005). Evidence of enhanced effective hot electron temperatures in ultraintense laser-solid interactions due to reflexing. Laser Part. Beams 23, 411416.CrossRefGoogle Scholar
Doumy, G., Quere, F., Gobert, O., Perdrix, M., Martin, P., Audebert, P., Gauthier, J.C., Geindre, J.-P. & Wittmann, T. (2004). Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. Phys. Rev. E 69, 026402CrossRefGoogle ScholarPubMed
Duda, B.J., Hemker, R.G., Tzeng, K.C. & Mori, W.B. (1999). A long-wavelength hosing instability in laser-plasma interactions. Phys. Rev. Lett. 83, 1978.CrossRefGoogle Scholar
Durfee, C.G. III, Linch, J. & Milchberg, H.M. (1994). Mode properties of a plasma waveguide for high-intensity laser pulses. Opt. Lett. 19, 1937.CrossRefGoogle Scholar
Faure, J., Glinec, Y. & Pukhov, A. (2004). A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541CrossRefGoogle ScholarPubMed
Galimberti, M., Giulietti, A., Giulietti, D., Gizzi, L.A., Balcou, Ph., Rousse, A. & Rousseau, J.Ph. (2001). Investigation of femtosecond laser-plasma interactions through w and 2 w imaging and spectroscopy. Laser Part. Beams 19, 4753.CrossRefGoogle Scholar
Gamucci, A., Galimberti, M., Giulietti, D., Gizzi, L.A., Labate, L., Petcu, C., Tomassini, P. & Giulietti, A. (2006). Production of hollow cylindrical plasmas for laser guiding in acceleration experiments. Appl. Phys. B 85, 611617.CrossRefGoogle Scholar
Geddes, C.G.R., Toth, C.S. & Van Tilborg, J., (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538.CrossRefGoogle ScholarPubMed
Gibbon, P., Monot, P., Auguste, R. & Mainfray, G. (1995). Measurable signatures of relativistic self-focusing in underdense plasmas. Phys. Plasmas 2, 1305.CrossRefGoogle Scholar
Giulietti, A., Tomassini, P., Galimberti, M., Giulietti, D., Gizzi, L.A., Koester, P., Labate, L., Ceccotti, T., D'Oliveira, P., Auguste, T., Monot, P. & Martin, P. (2006). Pre-pulse effect on intense femtosecond laser pulse propagation in gas. Phys. Plasmas 13, 093103-1093103-6.CrossRefGoogle Scholar
Giulietti, D., Galimberti, M., Giulietti, A., Gizzi, L.A. & Tomassini, P., Borghesi, M., Malka, V., Fritzler, S., Pittman, M. & Taphouc, K. (2002). Production of ultracollimated bunches of multi-MeV electrons by 35 fs laser pulses propagating in exploding-foil plasmas. Phys. Plasmas 9, 3655.CrossRefGoogle Scholar
Giulietti, D., Gizzi, L.A., Giulietti, A., Macchi, A., Teychenné, D., Chessa, P., Rousse, A., Cheriaux, G., Chambaret, J.P. & Darpentigny, G. (1997). Observation of solid-density laminar plasma transparency to intense 30 femtosecond laser pulses. Phys. Rev. Lett. 79, 3194.CrossRefGoogle Scholar
Giulietti, D., Galimberti, M., Giulietti, A., Gizzi, LA., Labate, L. & Tomassini, P. (2005). The laser-matter interaction meets the high energy physics: Laser-plasma accelerators and bright X/gamma-ray sources. Laser Part. Beams 23, 309314.CrossRefGoogle Scholar
Gizzi, L.A., Galimberti, M., Giulietti, A., Giulietti, D., Tomassini, P., Borghesi, M., Campbell, D.H., Schiavi, A. & Willi, O. (2001). Relativistic laser interactions with preformed plasma channels and gamma-ray measurements. Laser Part. Beams 19, 4753.CrossRefGoogle Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.CrossRefGoogle Scholar
Hidding, B., Amthor, K.-U., Liesfeld, B., Schwoerer, H., Karsch, S., Geissler, M., Veisz, L., Schmid, K., Gallacher, J.G., Jamison, S.P., Jaroszynski, D., Pretzler, G. & Sauerbrey, R. (2006). Generation of quasimonoenergetic electron bunches with 80-fs laser pulses. Phys. Rev. Lett. 96, 105004.CrossRefGoogle ScholarPubMed
Leemans, W.P., Siders, C.W., Esarey, E., Andreev, N.E., Shvets, G. & Mori, W.B. (1996). Plasma guiding and wakefield generation for second generation Experiments. IEEE Trans. Plasma Sci. 24, 331.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Mangles, S.P.D., Murphy, C.D. & Najmudin, Z. (2004). Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535.CrossRefGoogle ScholarPubMed
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Najmudin, Z., Krushelnik, K., Clark, E.L., Salvati, M., Santala, M.I.K., Tatarakis, M., Dangor, A.E., Malka, V., Neely, D., Allott, R. & Danson, C. (1999). First Observations of the laser hosing instability. CLF Annual Report 1998/99 Chien, UK: Rutherford Appleton Laboratory.Google Scholar
Ostrovskaya, G.V. & Zaidel, A.N. (1974). Laser spark in gases. Sov Phys.-Usp. 16, 834.CrossRefGoogle Scholar
Patin, D., Lefebvre, E., Bourdier, A. & D'Humieres, E. (2006). Stochastic heating in ultra high intensity laser-plasma interaction: Theory and PIC code simulations. Laser Part. Beams 24, 223230.CrossRefGoogle Scholar
Perelomov, A.M., Popov, V.S. & Terent'ev, M.V. (1966). Ionization of atoms in an alternating electric field. Sov. Phys. JETP 23, 924.Google Scholar
Perelomov, A.M., Popov, V.S. & Terent'ev, M.V. (1967). Ionization of atoms with electric ac fields. Sov. Phys. JETP 24, 207.Google Scholar
Sheng, H., Kim, K.Y., Kumarappan, V., Layer, B.D. & Milchberg, H.M. (2005). Plasma wave guides efficiently generated by Bessel beams in elongated cluster gas jets. Phys. Rev. E 72, 036411.CrossRefGoogle Scholar
Sherlock, M., Bell, A.R. & Rozmus, W. (2006). Absorption of ultra-short laser pulses and particle transport in dense targets. Laser Part. Beams 24, 231234.CrossRefGoogle Scholar
Sprangle, P., Hafizi, B., Peñano, J.R., Hubbard, R.F., Ting, A., Moore, C.I., Gordon, D.F., Zigler, A., Kaganovich, D. & Antonsen, T.M. Jr (2001). Wakefield generation and GeV acceleration in tapered plasma channels. Phys. Rev. E 63, 056405.CrossRefGoogle ScholarPubMed
Squillacioti, P., Galimberti, M., Labate, L., Tomassini, P., Giulietti, A., Shibkov, V. & Zamponi, F. (2004). Hydrodynamics of microplasmas from thin foils exploded by picosecond laser pulses. Phys. Plasmas 11, 226.CrossRefGoogle Scholar
Tomassini, P. & Giulietti, A. (2001). A generalization of Abel inversion to non-axisymmetric density distribution. Opt. Commun. 199, 143.CrossRefGoogle Scholar
Tomassini, P., Giulietti, A., Gizzi, L.A., Galimberti, M., Giulietti, D., Borghesi, M. & Willi, O. (2001). Analyzing laser plasma interferograms with a continuous wavelet transform ridge extraction technique: The method. Appl. Opt. 40, 6561.CrossRefGoogle ScholarPubMed
Wang, X., Nishikawa, K. & Nemoto, K. (2006). Observation of a quasimonoenergetic electron beam from a femtosecond prepulse-exploded foil. Phys. Plasmas 13, 080702.CrossRefGoogle Scholar