Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-nqqt6 Total loading time: 0.251 Render date: 2022-07-02T10:28:52.479Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Propagation characteristics of Hermite-cosh-Gaussian laser beam in a rippled density plasmas

Published online by Cambridge University Press:  04 January 2017

S. Kaur*
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar -143005, India
M. Kaur
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar -143005, India
R. Kaur
Affiliation:
Department of Physics, D. A. V. College, Jalandhar-144008, India
T.S. Gill
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar -143005, India
*
Address correspondence and reprint requests to: S. Kaur, Department of Physics, Guru Nanak Dev University, Amritsar-143005, India. E-mail: sukhdeep.iitd@gmail.com

Abstract

In the present research work, the authors have investigated the self-focusing and defocusing of Hermite-cosh-Gaussian laser (HChG) beam in an inhomogeneous rippled density plasmas. By taking the relativistic non-linearity into account, an equation for envelope is set up and solved using Wentzel–Kramers–Brillouin and the paraxial ray approximation. An ordinary non-linear differential equation governing the beam width parameter as a function of propagation distance is set up for different mode structures of the beam. Further, a numerical study of this differential equation is carried for suitable set of plasma and laser parameters. The beam undergoes periodic self-focusing/defocusing due to relativistic non-linearity. We also report the comparison between self-focusing/defocusing of HChG beam in the absence and presence of density ripple. Presence of ripple does not only leads to substantial increase in self-focusing length, but also results in oscillatory character with decreasing f. In a relativistic case, strong oscillatory self-focusing and defocusing is observed. Further, self-focusing is enhanced with increased value of decentered parameter.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, M., Vij, S. & Kant, N. (2014). Propagation of Cosh Gaussian laser beam in plasma with density ripple in relativistic – ponderomotive regime. Optik 125, 50815084.CrossRefGoogle Scholar
Arora, V., Naik, P.A., Chakera, J.A., Bagchi, S., Tayyab, M. & Gupta, P.D. (2014). Study of 1–8 keV K-α x-ray emission from high intensity femtosecond laser produced plasma. AIP Adv. 4, 047106.CrossRefGoogle Scholar
Asthana, M., Sodha, M.S. & Maheshwari, K.P. (1994). Nonlinear relativistic self-focusing of laser radiation in plasmas: Arbitrary intensity. Laser Part. Beams 12, 623632.CrossRefGoogle Scholar
Bonabi, R.S., Habibi, M. & Yazdani, E. (2009). Improving the relativistic self-focusing of intense laser beam in plasma using density transition. Phys. Plasmas 16, 083105.CrossRefGoogle Scholar
Boyd, R.W., Lukishova, S.G. & Shen, Y.R. (2009). Self-focusing: Past and Present Fundamentals and Prospects. New York: Springer.CrossRefGoogle Scholar
Ganeev, R.A., Toşa, V., Kovács, K., Suzuki, M., Yoneya, S. & Kuroda, H. (2015). Influence of ablated and tunnelled electrons on quasi-phase-matched high-order-harmonic generation in laser-produced plasma. Phys. Rev. A 91, 043823.CrossRefGoogle Scholar
Gill, T.S., Mahajan, R. & Kaur, R. (2011). Self-focusing of Cosh-Gaussian laser beam in a plasma with weakly relativistic and ponderomotive regime. Phys. Plasmas 18, 033110.CrossRefGoogle Scholar
Gupta, D.N., Hur, M.S., Hwang, I. & Suk, H. (2007). Plasma density ramp for relativistic self-focusing of an intense laser. J. Opt. Soc. Am. B 24, 1155.CrossRefGoogle Scholar
Habibi, M. & Ghamar, F. (2015). Significant enhancement in self-focusing of high-power laser beam through dense plasmas by ramp density profile. J. Opt. Soc. Am. B 32, 14291434.CrossRefGoogle Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.CrossRefGoogle Scholar
Irani, S., Pajouh, H.H. & Esfandyari, A. (2012). Consideration of self focusing of a Gaussian laser pulse with weak relativistic approximation in a plasma. Iranian J. Phys. Res 11, 361369.Google Scholar
Kant, N., Wani, M.A. & Kumar, A. (2012). Self-focusing of Hermite–Gaussian laser beams in plasma under plasma density ramp. Opt. Commun. 285, 44834487.CrossRefGoogle Scholar
Kaur, S. & Kaur, M. (2016). Pronounced focusing of Hermite Cosh Gaussian beam for mode index m = 0 in plasmas. Int. J. Curr. Res. Aca. Rev. 4, 176.CrossRefGoogle Scholar
Kaur, S. & Sharma, A.K. (2009). Self focusing of a laser pulse in plasma with periodic density ripple. Laser Part. Beams 27, 193.CrossRefGoogle Scholar
Kuo, C.C., Pai, C.H., Lin, M.W., Lee, K.H., Lin, J.Y., Wang, J. & Chen, S.Y. (2007). Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide. Phys. Rev. Lett. 98, 033901.CrossRefGoogle ScholarPubMed
Lin, M.W., Chen, Y.M., Pai, C.H., Kuo, C.C., Lee, K.H., Wang, J. & Chen, S.Y. (2006). Programmable fabrication of spatial structure in a gas jet by laser machining with a spatial light modulator. Phys. Plasmas 13, 1107011.CrossRefGoogle Scholar
Litvak, A.G. (1966). Self focusing of powerful light beams by thermal effects. J. Exp. Theor. Phys. Lett. 4, 230.Google Scholar
Liu, C.S. & Tripathi, V.K. (2008). Third harmonic generation of a short pulse laser in a plasma density ripple created by a machining beam. Phys. Plasmas 15, 023106.CrossRefGoogle Scholar
Lotov, K.V., Sosedkin, A.P., Petrenko, A.V., Amorim, L.D., Vieira, J., Fonseca, R.A., Silva, L.O., Gschwendtner, E. & Muggli, P. (2014). Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam. Phys. Plasmas 21, 123116.CrossRefGoogle Scholar
Luther, G.G., Moloney, J.V., Newell, A.C. & Wright, E.M. (1994). Self-focusing threshold in normally dispersive media. Opt. Lett. 19, 862864.CrossRefGoogle ScholarPubMed
Ma, G., Dallari, W., Borot, A., Krausz, F., Yu, W., Tsakiris, G.D. & Veisz, L. (2015). Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses. Phys. Plasmas 22, 033105.CrossRefGoogle Scholar
Mainfray, G. (1995). Relativistic self-focusing of an ultra-intense laser pulse in a plasma. J. Nonlinear Optic. Phys. Mat. 04, 547.CrossRefGoogle Scholar
Michel, P., Divol, L., Dewald, E.L., Milovich, J.L., Hohenberger, M., Jones, O.S., Hopkins, L.B., Berger, R.L., Kruer, W.L. & Moody, J.D. (2015). Multibeam stimulated raman scattering in inertial confinement fusion conditions. Phys. Rev. Lett. 115, 055003.CrossRefGoogle ScholarPubMed
Nanda, V., Kant, N. & Wani, M.A. (2013a). Self-focusing of a Hermite-Cosh Gaussian laser beam in a magnetoplasma with ramp density profile. Phys. Plasmas 20, 113109.CrossRefGoogle Scholar
Nanda, V., Kant, N., Wani, M.A. (2013b). Sensitiveness of decentred parameter for relativistic self focusing of Hermite-Cosh-Gaussian laser beam in plasma. IEEE Trans. Plasma Sci. 41, 22512256.CrossRefGoogle Scholar
Nanda, V. & Kant, N. (2014). Strong self-focusing of a Cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp. Phys. Plasmas 21, 072111.CrossRefGoogle Scholar
NKantanda, V. & Kant, N. (2014). Enhanced relativistic self-focusing of Hermite-Cosh-Gaussian laser beam in plasma under density transition. Phys. Plasmas 21, 042101.Google Scholar
Patil, S.D., Navare, S.T., Takale, M.V. & Dongare, M.B. (2009). Self-focusing of Cosh-Gaussian laser beams in a parabolic medium with linear absorption. Opt. Laser Eng. 47, 604606.CrossRefGoogle Scholar
Patil, S.D. & Takale, M.V. (2013). Weakly relativistic ponderomotive effects on self-focusing in the interaction of Cosh-Gaussian laser beams with a plasma. Laser Phys. Lett. 10, 115402.CrossRefGoogle Scholar
Patil, S.D., Takale, M.V. & Dongare, M.B. (2008a). Propagation of Hermite-Cosh-Gaussian laser beams in n-InSb. Opt. Commun. 281, 47764779.CrossRefGoogle Scholar
Patil, S., Takale, M., Fulari, V. & Dongare, M. (2008b). Propagation of Hermite-Cosh-Gaussian laser beams in non-degenerate germanium having space charge neutrality. J. Mod. Opt. 55, 35273533.CrossRefGoogle Scholar
Patil, S.D., Takale, M.V., Navare, S.T. & Dongare, M.B. (2008c). Cross focusing of two coaxial Cosh-Gaussian laser beams in a parabolic medium. Optik 122, 18691871.CrossRefGoogle Scholar
Patil, S.D., Takale, M.V., Navare, S.T. & Dongare, M.B. (2010). Focusing of Hermite-Cosh-Gaussian laser beams in collsionless magneto plasma. Laser Part. Beams, 28, 343.CrossRefGoogle Scholar
Patil, S.D., Takale, M.V., Navare, S.T., Fulari, V.J. & Dongare, M.B. (2007). Analytical study of HChG-laser beam propagation in collisional and collisionless plasmas. J. Opt. 36, 136144.CrossRefGoogle Scholar
Patil, S.D., Takale, M.V., Navare, S.T., Fulari, V.J. & Dongare, M.B. (2012). Relativistic self-focusing of Cosh-Gaussian laser beams in a plasma. Opt. Laser Technol. 44, 314317.CrossRefGoogle Scholar
Purohit, G., Gaur, B. & Rawat, P. (2016). Propagation of two intense Cosh-Gaussian laser beams in plasma in the relativistic-ponderomotive regime. J. Opt. Soc. Am. B 33, 17161722.CrossRefGoogle Scholar
Ren, J., Cheng, W., Li, S. & Suckewer, S. (2007). A new method for generating ultraintense and ultrashort laser pulses. Nat. Phys. 3, 732736.CrossRefGoogle Scholar
Rubenchik, A.M., Fedoruk, M.P. & Turitsyn, S.K. (2009). Laser beam self-focusing in the atmosphere. Phys. Rev. Lett. 102, 233902.CrossRefGoogle ScholarPubMed
Saini, N.S. & Gill, T.S. (2006). Self-focusing and self-phase modulation of an elliptic Gaussian laser beam in collisionless magnetoplasma. Laser Part. Beams 24, 447453.CrossRefGoogle Scholar
Sharma, P. (2015). Self focusing of Hermite- Gaussian laser beam with relativistic nonlinearity. AIP Conf. Proc. 1670, 030029.CrossRefGoogle Scholar
Singh, A. & Walia, A. (2010). Relativistic self-focusing and self channeling of Gaussian laser beam in plasma. Appl. Phys. B 101, 617622.CrossRefGoogle Scholar
Singh, M., Singh, R.K. & Sharma, R.P. (2013). THz generation by Cosh-Gaussian lasers in rippled density plasma. Eerophys. Lett. 104, 35002.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self focusing of laser beam in plasmas and semiconductor. In Progress in Optics, (Wolf, E. Ed.), Vol. XIII, p. 170, Amsterdem: North-Holland.Google Scholar
Suk, H., Barov, N., Rosenzweig, J.B. & Esarey, E. (2001). Trapping of background plasma electrons in a beam driven plasma wake field using a downward density transition. AIP Conf. Proc. 569, 630.CrossRefGoogle Scholar
Takale, M.V., Navare, S.T., Patil, S.D., Fulari, V.J. & Dongare, M.B. (2009). Self-focusing and defocusing of TEM0p Hermite–Gaussian laser beams in collisionless plasma. Opt. Commun. 282, 31573162.CrossRefGoogle Scholar
Umstadter, D. (2003). Relativistic laser–plasma interactions. J. Phys. D, Appl. Phys. 36, R151R165.CrossRefGoogle Scholar
Wang, Y. & Zhou, Z. (2011). Propagation characters of Gaussian laser beams in collision less plasma: Effect of plasma temperature. Phys. Plasmas 18, 043101.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Propagation characteristics of Hermite-cosh-Gaussian laser beam in a rippled density plasmas
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Propagation characteristics of Hermite-cosh-Gaussian laser beam in a rippled density plasmas
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Propagation characteristics of Hermite-cosh-Gaussian laser beam in a rippled density plasmas
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *