Hostname: page-component-797576ffbb-k7d4m Total loading time: 0 Render date: 2023-12-04T16:25:50.869Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Modeling of annular-laser-beam-driven plasma jets from massive planar targets

Published online by Cambridge University Press:  12 June 2012

V. Kmetík
Institute of Plasma Physics, v.v.i., Academy of Sciences of the Czech Republic, Praha, Czech Republic
J. Limpouch*
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Praha, Czech Republic
R. Liska
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Praha, Czech Republic
P. Váchal
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Praha, Czech Republic
Address correspondence and reprint requests to: J. Limpouch, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1, Czech Republic. E-mail:


Production of sharply collimated high velocity outflows – plasma jets from massive planar targets by a single laser beam at PALS facility is clarified via numerical simulations. Since only a few experimental data on the intensity distribution in the interaction beam near the focus are available for the PALS facility, the laser beam profile was calculated by a numerical model of the laser system and the interaction optics. The obtained intensity profiles are used as the input for plasma dynamic simulations by our cylindrical two-dimensional fluid code PALE. Jet formation due to laser intensity profile with a minimum on the axis is demonstrated. The outflow collimation improves significantly for heavier elements, even when radiative cooling is omitted. Using an optimized interaction beam profile, a homogeneous jet with a length exceeding its diameter by several times may be reliably generated for applications in laboratory astrophysics and impact ignition studies.

Research Article
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Badziak, J., Pisarczyk, T., Chodukowski, T., Kasperczuk, A., Parys, P., Rosinski, M., Wolowski, J., Krousky, E., Krasa, J., Masek, K., Pfeifer, M., Skala, J., Ullschmied, J., Velyhan, A., Dhareshwar, L.J., Gupta, N.K., Rhee, Y.J., Torrisi, L. & Pisarczyk, P. (2009). Formation of a supersonic laser-driven plasma jet in a cylindrical channel. Phys. Plasmas 16, 114506.Google Scholar
Borodziuk, S., Doskach, I.Y., Gus'kov, S.Y., Jungwirth, K., Kalal, M., Kasperczuk, A., Kralikova, B., Krousky, E., Limpouch, J., Masek, K., Pfeifer, M., Pisarczyk, P., Pisarczyk, T., Rohlena, K., Rozanov, V.B., Skala, J. & Ullschmied, J. (2004). Experimental and theoretical investigations of crater formation in an aluminium target in a PALS experiment. Nukleonika 49, 714.Google Scholar
Bridle, A.H. & Perley, R.A. (1984). Extragalactic radio jets. Annu. Rev. Astron. Astr. 22, 319358.Google Scholar
Campbell, J.C. & Shashkov, M.J. (2001). A tensor artificial viscosity using a mimetic finite difference algorithm. J. Comput. Phys. 172, 739765.Google Scholar
Caramana, E.J. & Shashkov, M.J. (1998). Elimination of artificial grid distortion and hourglass-type motions by means of Lagarangian subzonal masses and pressures. J. Comput. Phys. 142, 521561.Google Scholar
Caramana, E.J., Burton, D.E., Shashkov, M.J. & Whalen, P.P. (1998a). The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. J. Comput. Phys. 146, 227262.Google Scholar
Caramana, E.J., Shashkov, M.J. & Whalen, P.P. (1998b). Formulations of artificial viscosity for multi-dimensional shock wave computations. J. Comput. Phys. 144, 7097.Google Scholar
Farley, D.R., Estabrook, K.G., Glendinning, S.G., Glenzer, S.H., Remington, B.A., Shigemori, K., Stone, J.M., Wallace, R.J., Zimmerman, G.B. & Harte, J.A. (1999). Radiative jet experiments of astrophysical interest using intense lasers. Phys. Rev. Lett. 83, 19821985.Google Scholar
Gabl, E.F., Failor, B.H., Armentrout, C.J., Delamater, N.D., Fechner, W.B., Bosch, R.A., Busch, Gar E., Koenig, Z.M., Ress, D., Suter, L. & Schroeder, R.J. (1989). Plasma jets from laser-irradiated planar targets. Phys. Rev. Lett. 63, 27372740.Google Scholar
Grava, J., Purvis, M.A., Filevich, J., Marconi, M.C., Rocca, J.J., Dunn, J., Moon, S.J. & Shlyaptsev, V.N. (2008). Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry. Phys. Rev. E 78, 016403.Google Scholar
Gribkov, V.A., Krokhin, O.N., Nikulin, V.Ya., Semenov, O.G. & Sklizkov, G.V. (1975). Experimental investigation of nonspherical cumulative laser plasma configurations. Sov. J. Quantum Electron. 5, 530537.Google Scholar
Heathcote, S., Morse, J.A., Hartigan, P., Reipurth, B., Schwartz, R.D., Bally, J. & Stone, J.M. (1996). Hubble Space Telescope observations of the HH 47 jet: Narrowband images. Astrophys. J. 112, 11411168.Google Scholar
Hirt, C.W., Amsden, A.A. & Cook, J.L. (1974). An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227253.Google Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Rohlena, K., Skala, J. & Hora, H. (2006). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Plasmas 13, 062704.Google Scholar
Kasperczuk, A., Pisarczyk, T., Demchenko, N.N., Gus'kov, S.Yu., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2009). Experimental and theoretical investigations of mechanisms responsible for plasma jets formation at PALS. Laser Part. Beams 27, 415427.Google Scholar
Kasperczuk, A., Pisarczyk, T., Badziak, J., Borodziuk, S., Chodukowski, T., Parys, P., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2010). Interaction of two plasma jets produced successively from Cu target. Laser Part. Beams 28, 497504.Google Scholar
Kasperczuk, A., Pisarczyk, T., Chodukowski, T., Kalinowska, Z., Gus'kov, S.Yu., Demchenko, N.N., Klir, D., Kravarik, J., Kubes, P., Rezac, K., Ullschmied, J., Krousky, E., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2012). Plastic plasma as a compressor of aluminum plasma at the PALS experiment. Laser Part. Beams 30, 17.Google Scholar
Kuchařík, M., Shashkov, M. & Wendroff, B. (2003). An efficient linearity-and-bound-preserving remapping method. J. Comput. Phys. 188, 462471.Google Scholar
Lawrence, G.N. (1992). Optical modeling. In Applied Optics and Optical Engineering Shannon, R.R. & Wyant, J.C., Eds.), Vol. 11, pp. 125200. New York: Academic Press.Google Scholar
Lawrence, G.N. (2010). General Laser Analysis and Design Theoretical Description. Woodland, WA: Applied Optics Research.Google Scholar
More, R.M., Warren, K.H., Young, D.A. & Zimmerman, G.B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.Google Scholar
Nicolai, Ph., Tikhonchuk, V.T., Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Rohlena, K. & Ullschmied, J. (2006). Plasma jets produced in a single laser beam interaction with a planar target. Phys. Plasmas 13, 062701.Google Scholar
Nicolai, Ph., Stenz, P., Tikhonchuk, V., Ribeyre, X., Kasperczuk, A., Pisarczyk, T., Juha, L., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J., Ullschmied, J., Kalal, M., Klir, D., Kravarik, J., Kubes, P. & Pisarczyk, P. (2009). Supersonic plasma jet interaction with gases and plasmas. Astrophys. Space Sci. 322, 1117.Google Scholar
Reipurth, B. & Bally, J. (2001). Herbig-Haro flows: Probes of early stellar evolution. Annu. Rev. Astron. Astr. 39, 403455.Google Scholar
Remington, B.A., Drake, R.P. & Ryutov, D.D. (2006). Experimental astrophysics with high power lasers and Z pinches. Rev. Mod. Phys. 78, 755807.Google Scholar
Rosen, P.A., Wilde, B.H., Williams, R.J.R., Foster, J.M., Keiter, P.A., Coker, R.F., Perry, T.S., Taylor, M.J., Khokhlov, A.M., Drake, R.P., Bennett, G.R., Sinars, D.B. & Campbell, R.B. (2005). Recent experimental results and modelling of high-mach-number jets and the transition to turbulence. Astrophys. Space Sci. 298, 121128.Google Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Ya., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.Google Scholar
Shashkov, M. & Steinberg, S. (1996). Solving diffusion equations with rough coefficients in rough grids. J. Comput. Phys. 129, 383405.Google Scholar
Shigemori, K., Kodama, R., Farley, D.R., Koase, T., Estabrook, K.G., Remington, B.A., Ryutov, D.D., Ochi, Y., Azechi, H., Stone, J. & Turner, N. (2000). Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets. Phys. Rev. E 62, 88388841.Google Scholar
Sizyuk, V., Hassanein, A. & Sizyuk, T. (2007). Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications. Laser Part. Beams 25, 143154.Google Scholar
Spitzer, L. & Härm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977981.Google Scholar
Stehle, C., Ciardi, A., Colombier, J.P., Gonzalez, M., Lanz, T., Marocchino, A., Kozlova, M. & Rus, B. (2009). Scaling stellar jets to the laboratory: The power of simulations. Laser Part. Beams 27, 709717.Google Scholar
Velarde, P., Ogando, F., Eliezer, S., Martinez-Val, J.M., Perlado, J.M. & Murakami, M. (2005). Comparison between jet collision and shell impact concepts for fast ignition. Laser Part. Beams 23, 4346.Google Scholar
Willi, O., Rumsby, P.T. & Sartang, S. (1981). Optical probe observations of nonuniformities in laser-produced plasmas. IEEE J. Quantum Electron. 17, 19091917.Google Scholar
Winslow, A.M. (1963). Equipotential Zoning of Two-dimensional Meshes. Technical Report UCRL-7312, Livermore, CA: Lawrence Livermore National Laboratory.Google Scholar
Zinnecker, H., McCaughrean, M.J. & Rayner, J.T. (1998). A symmetrically pulsed jet of gas from an invisible protostar in Orion. Nature 394, 862865.Google Scholar