Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-19T20:31:36.288Z Has data issue: false hasContentIssue false

Kα emission and secondary electrons in femtosecond laser target interactions

Published online by Cambridge University Press:  14 October 2015

Eran Nardi*
Faculty of Physics, Weizmann Institute of Science, Rehovot, Israel
Zeev Zinamon
Faculty of Physics, Weizmann Institute of Science, Rehovot, Israel
Yitzhak Maron
Faculty of Physics, Weizmann Institute of Science, Rehovot, Israel
Address correspondence and reprint requests to: E. Nardi, Faculty of Physics, Weizmann Institute of Science, Rehovot, Israel. E-mail:


This paper deals with the contribution of secondary electron emission, produced during the slowing down of fast electrons, on the intensity and temporal shape of the generated Kα pulse. The problem is treated in a general manner emphasizing laser–plasma interactions, where it was suggested in the literature that these electrons could play an important role on the temporal duration. Here, we make use of a hybrid model which includes secondary emission in conjunction with the continuous slowing down approximation (CSDA). The results are compared with those obtained from a simple CSDA calculation, with no detailed accounting of secondary emission and without straggling. Secondary electrons were calculated to contribute up to an additional 20% to the total Kα yield and in the case of monoenergetic electron beams in thick targets also to influence the temporal shape. The pulse duration is not affected in a significant manner by the secondary electrons.

Research Article
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Agostinelli, S., Allison, J., Amako, K.A., Apostolakis, J., Araujo, H., Arce, P. & Howard, A. (2003). GEANT4—a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250303.CrossRefGoogle Scholar
Andreo, P. & Brahme, A. (1984). Restricted energy-loss straggling and multiple scattering of electrons in mixed Monte Carlo procedures. Radiat. Res. 100, 1629.CrossRefGoogle Scholar
Baro, J., Sempau, J., Fernández-Varea, J.M. & Salvat, F. (1995). PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl. Instrum. Meth. Phys. Res. Section B: Beam Interactions with Materials and Atoms 100, 3146.CrossRefGoogle Scholar
Bennett, G.R., Sinars, D.B., Wenger, D.F., Cuneo, M.E., Adams, R.G., Barnard, W.J. & Speas, C.S. (2006). High-brightness, high-spatial-resolution, 6.151 keV x-ray imaging of inertial confinement fusion capsule implosion and complex hydrodynamics experiments on Sandia's Z accelerator. Rev. Sci. Instrum. 77, 10E322.CrossRefGoogle Scholar
Berger, M.J. (1963). Monte Carlo calculation of the penetration and diffusion of fast charged particles. Meth. Comput. Phys. 1, 135215.Google Scholar
Berger, M.J. & Selzer, S.M. (1964). Tables of energy losses and ranges of electrons and positrons. Studies in the penetration of charged particles in matter, nuclear science series report number 39, publication 1133, NAS -NRC Washington D.C., 205.Google Scholar
Bousis, C., Emfietzoglou, D., Hadjidoukas, P. & Nikjoo, H. (2008). A Monte Carlo study of absorbed dose distributions in both the vapor and liquid phases of water by intermediate energy electrons based on different condensed-history transport schemes. Phys. Med. Biol. 53, 37393761.CrossRefGoogle ScholarPubMed
Chen, H., Shepherd, R., Chung, H.K., Kemp, A., Hansen, S.B., Wilks, S.C. & Beiersdorfer, P. (2007). Fast-electron-relaxation measurement for laser-solid interaction at relativistic laser intensities. Phys. Rev. E 76, 056402.CrossRefGoogle ScholarPubMed
Gregori, G., Glenzer, S.H., Chung, H.K., Froula, D.H., Lee, R.W., Meezan, N.B. & Sawada, H. (2006). Measurement of carbon ionization balance in high-temperature plasma mixtures by temporally resolved X-ray scattering. J. Quant. Spectrosc. Radiat. Transfer 99, 225237.CrossRefGoogle Scholar
Hatchett, S.P., Brown, C.G., Cowan, T., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuika, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.CrossRefGoogle Scholar
Kawrakov, I. (2000). Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med. Phys. 27, 485498.CrossRefGoogle Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535538.CrossRefGoogle ScholarPubMed
Murata, K., Kyser, D.F. & Ting, C.H. (1981). Monte Carlo simulation of fast secondary electron production in electron beam resists. J. Appl. Phys. 52, 43964405.CrossRefGoogle Scholar
Nardi, E. & Zinamon, Z. (1978). Energy deposition by relativistic electrons in high-temperature targets. Phys. Rev. A 18, 1246.CrossRefGoogle Scholar
Nardi, E., Zinamon, Z. & Maron, I. (2015) Energy content of target and electron flow in femtosecond laser target interactions. Laser Part. Beams 33, 245256.CrossRefGoogle Scholar
Neumayer, P., Lee, H.J., Offerman, D., Shipton, E., Kemp, A., Kritcher, A.L. & Glenzer, S.H. (2009). Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons. High Energ. Dens. Phys. 5, 244248.CrossRefGoogle Scholar
Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752757.CrossRefGoogle ScholarPubMed
Nilson, P.M., Davies, J.R., Theobald, W., Jaanimagi, P.A., Mileham, C., Jungquist, R.K. & Meyerhofer, D.D. (2012). Time-resolved measurements of hot-electron equilibration dynamics in high-intensity laser interactions with thin-foil solid targets. Phys. Rev. Lett. 108, 085002.CrossRefGoogle ScholarPubMed
Park, H.S., Chambers, D.M., Chung, H.K., Clarke, R.J., Eagleton, R., Giraldez, E. & Zhang, B.B. (2006). High-energy Kα radiography using high-intensity, short-pulse lasers. Phys. Plasmas 13, 056309.CrossRefGoogle Scholar
Passoni, M. & Lontano, M. (2004). One-dimensional model of the electrostatic ion acceleration in the ultraintense laser-solid interaction. Laser Part. Beams 22, 163169.CrossRefGoogle Scholar
Patoary, M.A.R., Alfaz Uddin, M., Haque, A.K.F., Basak, A.K., Talukder, M.R., Karim, K.R. & Saha, B.C. (2008). Electron impact K-shell ionization cross sections of atoms at relativistic energies. Int. J. Quant. Chem. 108, 10231035.CrossRefGoogle Scholar
Reich, C., Uschmann, I., Ewald, F., Düsterer, S., Lübcke, A., Schwoerer, H. & Gibbon, P. (2003). Spatial characteristics of Kα x-ray emission from relativistic femtosecond laser plasmas. Phys. Rev. E 68, 056408.CrossRefGoogle ScholarPubMed
Riley, D., Angulo-Gareta, J.J., Khattak, F.Y., Lamb, M.J., Foster, P.S., Divall, E.J., Hooker, C.J., Langley, A.J., Clarke, R.J. & Neely, D. (2005). Kα yields from Ti foils irradiated with ultrashort laser pulses. Phys. Rev. E 71, 016406.CrossRefGoogle ScholarPubMed
Riley, D., Khattak, F.Y., du Sert, O.P., Clarke, R.J., Divall, E.J., Edwards, M., Foster, P.S., Hooker, C.J., Langley, A.J., Mistry, P., Nely, D., Smith, J., Spindloe, C., Tallants, G.J. & Tolley, M. (2006). Efficient K-α and He-α emission from Ti foils irradiated with 400 nm, 45 fs laser pulses. J. Quant. Spectrosc. Radiat. Transfer 99, 537547.CrossRefGoogle Scholar
Rischel, C., Rousse, A., Uschmann, I., Albouy, P.A., Geindre, J.P., Audebert, P. & Antonetti, A. (1997). Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490492.CrossRefGoogle Scholar
Rohrlich, F. & Carlson, B.C. (1954). Positron-electron differences in energy loss and multiple scattering. Phys. Rev. 93, 3844.CrossRefGoogle Scholar
Romagnani, L., Fuchs, J., Borghesi, M., Antici, P., Audebert, P., Ceccherini, F., Cowan, T., Grismayer, T., Kar, S., Macchi, A., Mora, P., Pretzler, G., Schiavi, A., Toncian, T. & Willi, O. (2005). Dynamics of electric fields driving the laser acceleration of multi-MeV protons. Phys. Rev. Lett. 95, 195001.CrossRefGoogle ScholarPubMed
Schneider, D.O. & Cormack, D.V. (1959). Monte Carlo calculations of electron energy loss. Radiat. Res. 11, 418.CrossRefGoogle ScholarPubMed
Sokolowski-Tinten, K., Blome, C., Blums, J., Cavalleri, A., Dietrich, C., Tarasevitch, A. & von der Linde, D. (2003). Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature. 422, 287289.CrossRefGoogle ScholarPubMed
Zastrau, U., Audebert, P., Bernshtam, V., Brambrink, E., Kampfer, T., Kroupp, E., Loetzsch, R., Maron, Y., Ralchenko, Yu., Reinholz, H., Ropke, G. & Sengebusch, A. (2010). Temperature and Kα-yield radial distributions in laser-produced solid-density plasmas imaged with ultrahigh-resolution x-ray spectroscopy. Phys, Rev. E81, 02406.Google Scholar