Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-22T16:58:53.971Z Has data issue: false hasContentIssue false

Ion jet generation in the ultraintense laser interactions with rear-side concave target

Published online by Cambridge University Press:  17 June 2010

Bin Liu
Center for Applied Physics and Technology, Peking University, Beijing, People's Republic of China Graduate School, China Academy of Engineering Physics, Beijing, People's Republic of China
Hua Zhang
Center for Applied Physics and Technology, Peking University, Beijing, People's Republic of China Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Li-Bin Fu
Center for Applied Physics and Technology, Peking University, Beijing, People's Republic of China Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Yu-Qiu Gu
Fusion Research Center, Chinese Academy of Engineering Physics, Mianyang, Sichuan Province, People's Republic of China
Bao-Han Zhang
Fusion Research Center, Chinese Academy of Engineering Physics, Mianyang, Sichuan Province, People's Republic of China
Ming-Ping Liu
School of Information Engineering, Nanchang University, Nanchang, People's Republic of China
Bai-Song Xie
College of Nuclear Science and technology, Beijing Normal University, Beijing, People's Republic of China
Jie Liu*
Center for Applied Physics and Technology, Peking University, Beijing, People's Republic of China Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Xian-Tu He
Center for Applied Physics and Technology, Peking University, Beijing, People's Republic of China Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Address correspondence and reprint requests to: Jie Liu, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China. E-mails:;


In this paper, the ion jet generation from the interaction of an ultraintense laser pulse and a rear-side concave target is investigated analytically using a simple fluid model. We find that the ion expanding surface at the rear-side is distorted due to a strong charge-separation field, and that this distortion becomes dramatic with a singular cusp shown on the central axis at a critical time. The variation of the transverse ion velocity and the relative ion density diverge on the cusp, signaling the emergence of an on-axis ion jet. We have obtained analytical expressions for the critical time and the maximum velocity of the ion jet, and suggested an optimum shape for generating a collimated energetic ion jet. The above theoretical analysis has been verified by particle-in-cell (PIC) numerical simulations.

Research Article
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Bulanov, S.V. & Khoroshkov, V.S. (2002). Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28, 453456.CrossRefGoogle Scholar
Caruso, A. & Pais, V.A. (1996). The ignition of dense DT fuel by injected triggers. Nucl. Fusion 36, 745758.CrossRefGoogle Scholar
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernández, J., Gauthier, J.-C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pépin, H. & Renard-Legalloudec, N. (2004). Ultralow emittance, Multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801.CrossRefGoogle ScholarPubMed
Dromey, B., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kar, S., Kneip, S., Markey, K., Nagel, S.R., Willingale, L., McKenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P.A. & Zepf, M. (2009). Third harmonic order imaging as a focal spot diagnostic for high intensity laser-solid interactions. Laser Part. Beams 27, 243248.CrossRefGoogle Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003.CrossRefGoogle ScholarPubMed
Fazio, E., Neri, F., Ossi, P.M., Santo, N. & Trusso, S. (2009). Ag nanocluster synthesis by laser ablation in Ar atmosphere: A plume dynamics analysis, laser and particle beams. Laser Part. Beams 27, 281290.CrossRefGoogle Scholar
Feurer, T., Theobald, W., Sauerbrey, R., Uschmann, T., Altenbernd, D., Teubner, U., Gibbon, P., Förster, E., Malka, G. & Miquel, J.L. (1997). Onset of diffuse reflectivity and fast electron flux inhibition in 528-nm-laser-solid interactions at ultrahigh intensity. Phys. Rev. E 56, 46084614.CrossRefGoogle Scholar
Fuchs, J., Antici, P., D'humières, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C.A., Kaluza, M., Malka, V., Manclossi, M., Meyroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pépin, H. & Audebert, P. (2006). Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2, 4854.CrossRefGoogle Scholar
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Y. & Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser Part. Beams 24, 1522.CrossRefGoogle Scholar
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernández, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nat. 439, 441444.CrossRefGoogle ScholarPubMed
Henig, A., Steinke, S., Schnürer, M., Sokollik, T., Hörlein, R., Kiefer, D., Jung, D., Schreiber, J., Hegelich, B.M., Yan, X.Q., Meyer-ter-Vehn, J., Tajima, T., Nickles, P.V., Sandner, W. & Habs, D. (2009). Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003.CrossRefGoogle ScholarPubMed
Hoffmann, D.H.H. (2008 a). Laser interaction with matter and heavy ion fusion. Laser Part. Beams 26, 509510.Google Scholar
Hoffmann, D.H.H. (2008 b). Laser matter interaction and related conferences. Laser Part. Beams 26, 137138.Google Scholar
Hong, W., He, Y., Wen, T., Du, H., Teng, J., Qing, X., Huang, Z., Huang, W., Liu, H., Wang, X., Huang, X., Zhu, Q., Ding, Y. & Peng, H. (2009). Spatial and temporal characteristics of X-ray emission from hot plasma driven by a relativistic femtosecond laser pulse. Laser Part. Beams 27, 1926.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Izgorodin, V.M., Abzaev, F.M., Balyaev, A.P., Bessarab, A.V., Cherkesova, I.N., Chulkov, V.U., Fenoshin, D.Y., Garanin, S.G., Gogolev, V.G., Golubinsky, A.G., Ignat'ev, Y.V., Irinichev, D.A., Lachtikov, A.E., Morovov, A.P., Nazarov, V.V., Nikolaev, G.P., Pepelyaev, A.P., Pinegin, A.V., Rojz, I.M., Romaev, V.N., Solomatina, E.Y., Vasin, M.G. & Veselov, A.V. (2009). Target technology development for the research of high energy density physics and inertial fusion at the RFNC-VNIIEF. Laser Part. Beams 27, 657680.CrossRefGoogle Scholar
Karsch, S., Habs, D., Schatz, T., Schramm, U., Thirolf, P.G., Meyer-ter-Vehn, J. & Pukhov, A. (1999). Particle physics with petawatt-class lasers. Laser Part. Beams 17, 565570.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Nicolai, P.H., Stenz, C.H., Tikhonchuk, V., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J., Klir, D., Kravarik, J., Kubes, P. & Pisarczyk, P. (2009 a). Investigations of plasma jet interaction with ambient gases by multi-frame interferometric and X-ray pinhole camera systems. Laser Part. Beams 27, 115122.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Demchenko, N.N., Gus'kov, S.Y., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2009 b). Experimental and theoretical investigations of mechanisms responsible for plasma jets formation at PALS. Laser Part. Beams 27, 415427.CrossRefGoogle Scholar
Kawata, S., Kong, Q., Miyazaki, S., Miyauchi, K., Sonobe, R., Sakai, K., Nakajima, K., Masuda, S., Ho, Y.K., Miyanaga, N., Limpouch, J. & Andreev, A.A. (2005). Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser. Laser Part. Beams 23, 6167.CrossRefGoogle Scholar
Key, M.H., Cable, M.D., Cowan, T.E., Estabrook, K.G., Hammel, B.A., Hatchett, S.P., Henry, E.A., Hinkel, D.E., Kilkenny, J.D., Koch, J.A., Kruer, W.L., Langdon, A.B., Lasinski, B.F., Lee, R.W., Macgowan, B.J., Mackinnon, A., Moody, J.D., Moran, M.J., Offenberger, A.A., Pennington, D.M., Perry, M.D., Phillips, T.J., Sangster, T.C., Singh, M.S., Stoyer, M.A., Tabak, M., Tietbohl, G.L., Tsukamoto, M., Wharton, K. & Wilks, S.C. (1998). Hot electron production and heating by hot electrons in fast ignitor research. Phys. Plasmas 5, 19661972.CrossRefGoogle Scholar
Kline, J.L., Montgomery, D.S., Rousseaux, C., Baton, S.D., Tassin, V., Hardin, R.A., Flippo, K.A., Johnson, R.P., Shimada, T., Yin, L., Albright, B.J., Rose, H.A. & Amiranoff, F. (2009). Investigation of stimulated Raman scattering using a short-pulse diffraction limited laser beam near the instability threshold. Laser Part. Beams 27, 185190.CrossRefGoogle Scholar
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.CrossRefGoogle Scholar
Laska, L., Badziak, J., Gammino, S., Jungwirth, K., Kasperczuk, A., Krasa, J., Krousky, E., Kubes, P., Parys, P., Pfeifer, M., Pisarczyk, T., Rohlena, K., Rosinski, M., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J., Velyhan, A. & Wolowsk, J. (2007). The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams. Laser Part. Beams 25, 549556.CrossRefGoogle Scholar
Li, L.M., Liu, L., Cheng, G.X., Xu, Q.F., Ge, X.J. & Wen, J.C. (2009). Layer structure, plasma jet, and thermal dynamics of Cu target irradiated by relativistic pulsed electron beam. Laser Part. Beams 27, 497509.CrossRefGoogle Scholar
Lifshitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser-plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Y. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225234.CrossRefGoogle Scholar
Liu, M.P., Wu, H.C., Xie, B.S., Liu, J., Wang, H.Y. & Yu, M.Y. (2008). Energetic collimated ion bunch generation from an ultraintense laser interacting with thin concave targets. Phys. Plasmas 15, 063104.CrossRefGoogle Scholar
Ma, Y.Y., Sheng, Z.M., Gu, Y.Q., Yu, M.Y., Yin, Y., Shao, F.Q., Yu, T.P. & Chang, W.W. (2009). High-quality MeV protons from laser interaction with umbrellalike cavity target. Phys. Plasmas 16, 034502.CrossRefGoogle Scholar
Malekynia, B., Ghoranneviss, M., Hora, H. & Miley, G.H. (2009). Collective alpha particle stopping for reduction of the threshold for laser fusion using nonlinear force driven plasma blocks. Laser Part. Beams 27, 233241.CrossRefGoogle Scholar
Malka, G. & Miquel, L. (1996). Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target. Phys. Rev. Lett. 77, 7578.CrossRefGoogle ScholarPubMed
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399405.CrossRefGoogle Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laserplasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.CrossRefGoogle ScholarPubMed
Nieter, C. & Cray, J.R. (2004). VORPAL: A versatile plasma simulation code. J. Comput. Phys. 196, 448473.CrossRefGoogle Scholar
Okada, T., Andreev, A.A., Mikado, Y. & Okubo, K. (2006). Energetic proton acceleration and bunch generation by ultraintense laser pulses on the surface of thin plasma targets. Phys. Rev. E 74, 026401.CrossRefGoogle ScholarPubMed
Ott, E. (1972). Nonlinear evolution of the Rayleigh-Taylor instability of a thin layer. Phys. Rev. Lett. 29, 14291432.CrossRefGoogle Scholar
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004.CrossRefGoogle ScholarPubMed
Roth, M., Brambrink, E., Audebert, B., Blazevic, A., Clarke, R., Cobble, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neelz, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Sadighi-Bonabi, R., Navid, H.A. & Zobdeh, P. (2009). Observation of quasi mono-energetic electron bunches in the new ellipsoid cavity model. Phys. Rev. Lett. 27, 223231.Google Scholar
Sakai, K., Miyazaki, S., Kawata, S., Hasumi, S. & Kikuchi, T. (2006). High-energy-density attosecond electron beam production by intense short-pulse laser with a plasma separator. Laser Part. Beams 24, 321328.CrossRefGoogle Scholar
Sharma, R.P. & Sharma, P. (2009). Effect of laser beam filamentation on second harmonic spectrum in laser plasma interaction. Laser Part. Beams 27, 157169.CrossRefGoogle Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.CrossRefGoogle ScholarPubMed
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., Mackinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542549.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernández, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar
Yu, W., Xu, H., He, F., Yu, M.Y., Ishiguro, S., Zhang, J. & Wong, A.Y. (2005). Direct acceleration of solid-density plasma bunch by ultraintense laser. Phys. Rev. E 72, 046401.CrossRefGoogle ScholarPubMed
Yu, W., Yu, M.Y., Xu, H., Tian, Y.W., Chen, J. & Wong, A.Y. (2007). Intense local plasma heating by stopping of ultrashort ultraintense laser pulse in dense plasma. Laser Part. Beams 25, 631638.CrossRefGoogle Scholar