Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T16:54:33.711Z Has data issue: false hasContentIssue false

Investigation of laser-produced chlorine plasma radiation for non-monochromatic X-ray scattering experiments

Published online by Cambridge University Press:  21 September 2006

Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
Gesellschaft für Schwerionenforschung mbH, Plasmaphysik, Darmstadt, Germany
Physique des Interactions Ioniques et Moléculaires, UMR6633, Université d'Aix-Marseille 1 et CNRS, Centre de Saint Jérôme, Marseille, France
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
Gesellschaft für Schwerionenforschung mbH, Plasmaphysik, Darmstadt, Germany
Gesellschaft für Schwerionenforschung mbH, Plasmaphysik, Darmstadt, Germany
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany


The chlorine Heα radiation of polyvinyl chloride (PVC) was investigated with respect to X-ray scattering experiments on dense plasmas. The X-ray source was a laser-produced plasma that was observed with a highly reflective highly oriented pyrolytic graphite (HOPG) crystal spectrometer as it is used in current x-ray scattering experiments on dense plasmas. The underlying dielectronic satellites of Heα cannot be resolved, therefore the plasma was observed at the same time with a focusing spectrometer with spatial resolution. To reconstruct the spectrum a simple model to calculate the spectral line emission based on dielectronic recombination and inner shell excitation of helium- and lithium-like ions was used. The analysis shows that chlorine dielectronic satellite emission is intense compared to Heα in laser-produced chlorine plasmas with a temperature of 300 eV in this wavelength range of Δλ = 0.07 Å (ΔE = 43 eV). The method proposed in this paper allows deducing experimentally the role of the underlying dielectronic satellites in the scatter spectrum measured with a HOPG crystal spectrometer. It is shown that the dielectronic satellites can be neglected when the scattering is measured with low spectral resolution in the non-collective regime. They are of major importance in the collective scatter regime where a high spectral resolution is necessary.

Research Article
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Antsiferov, P.S., Rosmej, F.B., Rosmej, O.N., Schmidt, H., Schulz, D. & Schulz, A. (1995). X-ray diagnostics of plasma focus DPF-78 discharge with heavy gas admixtures. J. Appl. Phys. 77, 49734978.CrossRefGoogle Scholar
Faenov, A.Ya. & Loboda, P.A. (2006). The SPECTR-W3 atomic database project.
Faenov, A.Ya, Pikuz, S.A., Erko, A.I., Bryunetkin, B.A., Dyakin, V.M., Ivanenkov, G.V., Mingaleev, A.R., Pikuz, T.A., Romanova, V.M. & Shelkovenko, T.A. (1994). High-performance x-ray spectroscopic devices for plasma microsources investigations. Phys. Scripta 50, 333338.CrossRefGoogle Scholar
Gabriel, A.H. (1972). Dielectronic satellite spectra for highly-charged helium-like ion lines. Mon. Not. R. Astr. Soc. 160, 99119.CrossRefGoogle Scholar
Glenzer, S.H., Back, C.A., Suter, L.J., Blain, M.A., Landen, O.L., Lindl, J.D., MacGowan, B.J., Stone, G.F., Turner, R.E. & Wilde, B.H. (1997). Thomson scattering from inertial-conferment-fusion hohlraum plasmas. Phys. Rev. Lett. 79, 12771280.CrossRefGoogle Scholar
Glenzer, S.H., Gregori, G., Lee, R.W., Rogers, F.J., Pollaine, S.W. & Landen, O.L. (2003). Demonstration of spectrally resolved X-ray scattering in dense plasmas. Phys. Rev. Lett. 90, 175002.CrossRefGoogle Scholar
Gregori, G., Glenzer, S.H., Rogers, F.J., Pollaine, S.W., Landen, O.L., Blancard, C., Faussurier, G., Renaudin, P., Kuhlbrodt, S. & Redmer, R. (2004). Electronic structure measurements of dense plasmas. Phys. Plasmas 11, 2754.CrossRefGoogle Scholar
Gregori, G., Glenzer, S.H. & Landen, O.L. (2003). Theoretical model of X-ray scattering as a dense matter probe. Phys. Rev. E 67, 59715980.Google Scholar
Henke, B.L., Uejio, J.Y., Stone, G.F., Dittmore, C.H. & Fujiwara, F.G. (1986). High-energy X-ray response of photographic films: Models and measurement. J. Opt. Soc. Am. B 3, 15401550.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Höll, A., Redmer, R., Röpke, G. & Reinholz, H. (2004). X-ray Thomson scattering in warm dense matter. Eur. Phys. J. D 29, 159162.CrossRefGoogle Scholar
Kozyreva, A., Basko, M., Rosmej, F.B., Schlegel, T., Tauschwitz, A. & Hoffmann, D.H.H. (2003). Dynamic confinement of targets heated quasi-isochorically with heavy ion beams. Phys. Rev. E 68, 056406.Google Scholar
Kunze, H.J. (1968). The laser as a tool for plasma diagnostics. In Plasma Diagnostics (Lochte-Holtgreven, W., Ed.), pp. 550616. Amsterdam: North-Holland Publishing Company.
Landen, O.L., Glenzer, S.H., Edwards, M.J., Lee, R.W., Collins, G.W., Cauble, R.C., Hsing, W.W. & Hammel, B.A. (2001). Dense matter characterization by X-ray Thomson scattering. J. Quant. Spectrosc. Radiat. Transfer 71, 465478.CrossRefGoogle Scholar
Lee, R.W., Baldis, H.A., Cauble, R.C., Landen, O.L., Wark, J.S., Ng, A., Rose, S.J., Lewis, C., Riley, D., Gauthier, J.-C. & Audebert, P. (2002). Plasma-based studies with intense X-ray and particle beam sources. Laser Part. Beams 20, 527536.Google Scholar
Lomonosov, I.V. & Tahir, N.A. (2006). Prospects of High-Energy Density Matter Research at the Future FAIR Facility at Darmstadt. Nucl. Phys. News 16, 2935.CrossRefGoogle Scholar
Moore, A.W. (1973). Highly oriented pyrolytic graphite. In Chemistry and Physics of carbon 11 (P.L. Walker, Jr., & P.A. Thrower, Eds.), p. 69. New York: Marcell Dekker.
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Götte, S., Häfner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.J., Kühl, T., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser Part. Beams 23, 385389.CrossRefGoogle Scholar
Niemann, C., Rosmej, F.B., Tauschwitz, A., Neff, S., Penache, D., Birkner, R., Constantin, C., Knobloch, R., Presura, R., Hoffmann, D.H.H., Yu, S.S. & Lee, R.W. (2003). Spectroscopic density and temperature measurements and modelling of a discharge plasma for neutralized ion-beam transport. J. Phys. D: Appl. Phys. 36, 21022109.CrossRefGoogle Scholar
Ohler, M., Baruchel, J., Moore, A.W., Gaez, P. & Freund, A. (1997). Direct observation of mosaic blocks in highly oriented pyrolytic graphite. Nucl. Instr. Meth. B 129, 257260.CrossRefGoogle Scholar
Redmer, R., Reinholz, H., Röpke, G., Thiele, R. & Höll, A. (2005). Theory of X-Ray Thomson Scattering in Dense Plasmas. IEEE Trans. Plasma Sci. 33, 7784.CrossRefGoogle Scholar
Renner, O., Krousky, E., Rosmej, F.B., Sondhauss, P., Uschmann, I., Förster, E., Kalachnikov, M.P. & Nickles, P.V. (2001). Over critical density plasma diagnosis inside laser-produced craters. Appl. Phys. Lett. 79, 177179.CrossRefGoogle Scholar
Renner, O., Uschmann, I. & Förster, E. (2002). Diagnostic potential of advanced X-ray spectroscopy for investigation of hot dense plasmas. Laser Part. Beams 22, 2528.Google Scholar
Renninger, R. (1954). Absolut-Vergleich der stärksten röntgenreexe verschiedener kristalle. Acta crystallographica 7, 677.Google Scholar
Riley, D. & Rosmej, F.B. (2004). X-ray scattering from PHELIX plasmas.
Rosmej, F.B. (1995). Spectra simulations of Be-like 1s2x2ynz − 1s22xnz satellite transitions of highly ionized ions. Nucl. Instr. Meth. B 98, 3336.CrossRefGoogle Scholar
Rosmej, F.B. (2001). A new type of analytical model for complex radiation emission of hollow ion in fusion, laser and heavy-ion-beam-produced plasmas. Europhys. Lett. 55, 472478.CrossRefGoogle Scholar
Rosmej, F.B. & Abdallah, J.A., Jr. (1998). Blue satellite structure near Heα and Heα and redistribution of level populations. Phys. Lett. A 245, 548554.CrossRefGoogle Scholar
Rosmej, F.B., Faenov, A.Ya., Pikuz, T.A., Flora, F., di Lazzaro, P., Bollanti, S., Lisi, N., Letardi, T., Reales, A., Palladino, L., Batani, D., Bossi, S., Bornardinello, A., Scafati, A., Reale, L., Zigler, A., Fraenkel, M. & Cowan, R.D. (1997). Inner-shell satellite transitions in dense short pulse plasmas. J. Quant. Spectroc. Radiat. Trans. 58, 859878.CrossRefGoogle Scholar
Rosmej, F.B., Griem, H.R., Elton, R.C., Jacobs, V.L., Cobble, J.A., Faenov, A.Ya., Pikuz, T.A., Geissel, M., Hoffmann, D.H.H., Süss, W., Uskov, D.B., Shevelko, V.P. & Mancini, R.C. (2002a). Charge-exchange-induced two-electron satellite transitions from autoionizing levels in dense plasmas. Phys. Rev. E 66, 056402.Google Scholar
Rosmej, F.B., Hoffmann, D.H.H., Geissel, M., Roth, M., Pirzadeh, P., Faenov, A.Ya., Pikuz, T.A., Skobelev, I.Yu. & Magunov, A.I. (2001a). Advanced X-ray diagnostics based on an observation of high-energy Rydberg transitions from autoionizing levels in dense laser-produced plasmas. Phys. Rev. A 63, 063409.Google Scholar
Rosmej, F.B., Hoffmann, D.H.H., Süss, W., Geissel, M., Faenov, A.Ya. & Pikuz, T.A. (2001b). Direct observation of forbidden X-ray transitions from autoionizing levels in dense laser-produced plasmas. Phys. Rev. A 63, 032716.Google Scholar
Rosmej, F.B., Renner, O., Krousky, E., Wieser, J., Schollmeier, M., Krasa, J., Laska, L., Kralikova, B., Skalar, J., Bodnar, M., Rosmej, O.N. & Hoffmann, D.H.H. (2002b). Space resolved analysis of highly charged radiating target ions generated by kilojoule laser beams. Laser Part. Beams 20, 555557Google Scholar
Rosmej, O.N., Pikuz, S.A., Jr., Korostiy, S., Blazevic, A., Brambrink, E., Fertman, A., Mutin, V., Efremov, V.P., Pikuz, T.A.,Faenov, A.Ya., Loboda, P., Golubev, A.A., &Hoffmann, D.H.H. (2005). Radiation dynamics of fast heavy ions interacting with matter. Laser Part. Beams 23, 7985.Google Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Ya., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.Google Scholar
Sánchez del Rìo, M., Gambaccini, M., Pareshi, G., Taibi, A., Tuffanelli, A. & Freund, A. (1998). Focusing properties of mosaic crystals. SPIE proceedings 3448, 246255.CrossRefGoogle Scholar
Sheffield, J. (1975). Plasma Scattering of Electromagnetic Radiation. New York: Academic Press.
Skobelev, I.Yu., Faenov, A.Ya., Bryunetkin, B.A., Dyakin, V.M., Pikuz, T.A., Pikuz, S.A., Shelkovenko, T.A., Romanova, V.M. & Mingaleev, R.A. (1995). Investigating the emission properties of plasma structures with X-ray emission spectroscopy. Sov. Phys. JETP 81, 692718.Google Scholar
van Regemorter, H. (1962). Rate of collisional excitation in stellar atmospheres. Astrophys. J. 136, 906915.CrossRefGoogle Scholar
Vainshtein, L.A. & Safronova, U.I. (1978). Wavelengths and transition probabilities of satellites to resonance lines of H- and He-like ions. At. Data Nucl. Data Tables 21, 4968.CrossRefGoogle Scholar
Vainshtein, L.A. & Safronova, U.I. (1980). Dielectronic satellite spectra for highly charged H-like ions (2l′3l′′ − 1s2l, 2l′3l′′ − 1s3l) and He-like ions (1s2l′3l′′ − 1s22l, 1s2l′3l′′ − 1s23l) with Z = 6–33. At. Data Nucl. Data Tables 25, 311385.CrossRefGoogle Scholar
Zhang, H. & Sampson, D.H. (1987). Collision rates for excitation of helium-like ions with inclusion of resonance effects. Astrophys. J. Suppl. Ser. 63, 487514.CrossRefGoogle Scholar
Urry, M.K., Gregori, G., Landen, O.L., Pak, A. & Glenzer, S.H. (2006). X-ray probe development for collective scattering measurements in dense plasmas. J. Quant. Spectrosc. Radiat. Transf. 99, 636648.CrossRefGoogle Scholar