Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-54vk6 Total loading time: 0.218 Render date: 2022-08-12T09:53:30.349Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Heavy ion beam final transport through an insulator guide in heavy ion fusion

Published online by Cambridge University Press:  22 July 2003

SHIGEO KAWATA
Affiliation:
Department of Energy and Environmental Science, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
TETSUO SOMEYA
Affiliation:
Department of Energy and Environmental Science, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
TAKASHI NAKAMURA
Affiliation:
Department of Energy and Environmental Science, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
SHUJI MIYAZAKI
Affiliation:
Department of Energy and Environmental Science, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
KOJI SHIMIZU
Affiliation:
Department of Energy and Environmental Science, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
ALEKSANDAR I. OGOYSKI
Affiliation:
Department of Energy and Environmental Science, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan

Abstract

Key issues of heavy ion beam (HIB) inertial confinement fusion (ICF) include an efficient stable beam transport, beam focusing, uniform fuel pellet implosion, and so on. To realize a HIB fine focus on a fuel pellet, space-charge neutralization of incident focusing HIB is required at the HIB final transport just after a final focusing element in an HIB accelerator. In this article, an insulator annular tube guide is proposed at the final transport part, through which a HIB is transported. The physical mechanism of HIB charge neutralization based on an insulator annular guide is as follows: A local electric field created by HIB induces local discharges, and plasma is produced on the insulator inner surface. Then electrons are extracted from the plasma by the HIB net space charge. The electrons emitted neutralize the HIB space charge well.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Heavy ion beam final transport through an insulator guide in heavy ion fusion
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Heavy ion beam final transport through an insulator guide in heavy ion fusion
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Heavy ion beam final transport through an insulator guide in heavy ion fusion
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *