Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-gszfc Total loading time: 0.209 Render date: 2022-06-28T10:54:12.893Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Final compression beamline systems for heavy ion fusion drivers

Published online by Cambridge University Press:  24 June 2011

Y.Y. Lau*
Affiliation:
The Chinese University of Hong Kong, Shatin, Hong Kong
Simon S. Yu
Affiliation:
The Chinese University of Hong Kong, Shatin, Hong Kong Lawrence Berkeley National Laboratory, Berkeley, California
John J. Barnard
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
Peter A. Seidl
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, California
*
Address correspondence and reprint requests to: Yuk Yeung Lau, The Chinese University of Hong Kong, Shatin, Hong Kong. E-mail: yylau@phy.cuhk.edu.hk

Abstract

We have identified a general final compression section for HIF drivers, the section between accelerator and the target. The beams are given a head to tail velocity tilt at the beginning of the section for longitudinal compression, while going through bends that direct it to the target at specific angle. The aim is to get the beams compressed while maintaining a small centroid off-set after the bends. We used a specific example, 1 MJ driver with 500 MeV Rubidium + 1 ion beams. We studied the effect of minimizing dispersion using different bend strategies, and came up with a beamline point design with adiabatic bends. We also identified some factors that lead to emittance growth as well as the minimum pulse length and spot size on the target.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

De Hoon, M.J.L. (2001). Drift Compression and Final Focus Systems for Heavy Ion Inertial Fusion. Ph.D. Thesis, University of California, Berkeley.Google Scholar
Grote, D.P., Friedman, A., Vay, J.L. & Haber, I. (2005). The WARP code: Modeling high intensity ion beams. AIP Conf. Proc. 749, 5558.CrossRefGoogle Scholar
Lee, E.P. & Barnard, J.J. (2002). Bends and momentum dispersion during final compression in heavy ion fusion drivers. Laser Part. Beams 20, 581584.CrossRefGoogle Scholar
Roy, P.K., Yu, S.S., Henestroza, E., Anders, A., Bieniosek, F.M., Coleman, J., Eylon, S., Greenway, W.G., Leitner, M., Logan, B.G., Waldon, W.L., Welch, D.R., Thoma, C., Sefkow, A.B., Gilson, E.P., Efthimion, P.C. & Davidson, R.C. (2005). Drift compression of an intense neutralized ion beam. Phys. Rev. Lett. 95, 234801.CrossRefGoogle ScholarPubMed
Runge, J. & Logan, B.G. (2009). Nonuniformity for rotated beam illumination in directly driven heavy-ion fusion. Phys. Plasmas 16, 033109.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Final compression beamline systems for heavy ion fusion drivers
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Final compression beamline systems for heavy ion fusion drivers
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Final compression beamline systems for heavy ion fusion drivers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *