Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-15T15:56:19.723Z Has data issue: false hasContentIssue false

Experimental results for high intensity KrF laser/plasma interaction

Published online by Cambridge University Press:  09 March 2009

A. A. Offenberger
Affiliation:
Department of Electrical Engineering, University of Alberta, Edmonton, Alberta, Canada, T6G 2G7
R. Fedosejevs
Affiliation:
Department of Electrical Engineering, University of Alberta, Edmonton, Alberta, Canada, T6G 2G7
P. D. Gupta
Affiliation:
Department of Electrical Engineering, University of Alberta, Edmonton, Alberta, Canada, T6G 2G7
R. Popil
Affiliation:
Department of Electrical Engineering, University of Alberta, Edmonton, Alberta, Canada, T6G 2G7
Y. Y. Tsui
Affiliation:
Department of Electrical Engineering, University of Alberta, Edmonton, Alberta, Canada, T6G 2G7

Abstract

A high power KrF laser system employing beam multiplexing and stimulated Raman or Brillouin scattering to produce pulses as short as 1 ns and focused intensities on target of 1011 to 1014 W/cm2 has been developed for laser/plasma interaction research. A variety of investigations have been pursued on single and multilayer targets with variable atomic numbers. Absorption, transport, X-ray conversion, ion expansion characteristics, mass ablation and ablation pressure scaling, and stimulated scattering instabilities are among features that have been studied as a function of laser intensity. A wide variety of laser and target diagnostics are employed including focal plane imaging cameras for energy distribution and UV and soft X-ray streak cameras for temporally resolving the incident laser pulse and X-ray emission. Experimental results will be presented and our current understanding of the KrF laser/plasma interaction will be discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eidmann, K., Amiranoff, F., Fedosejevs, R., Maaswinkel, A. G. M., Petsch, R.Sigel, R., Spindler, G., Teng, , Yung-lu, , Tsakiris, G. & Witkowski, S. 1984 Phys. Rev. A30, 2568.CrossRefGoogle Scholar
Fedosejevs, R. & Offenberger, A. A. 1985 IEEE J. Quantum Electron. QE-21, 1558.CrossRefGoogle Scholar
Goldsack, T. J., Kilkenny, J. D., MaCgowan, B. J., Veats, S. A., Cunningham, P.Lewis, C. L. S., Key, M. H., Rumsby, P. T. & Toner, W. T. 1982 Opt. Commun. 42, 55.CrossRefGoogle Scholar
Grun, J., Obenschain, S. P., Ripin, B. H., Whitlock, R. R., McLean, E. A., Gardner, J., Herbst, M. J., Stamper, J. A. 1983 Phys. Fluids, 26, 588.CrossRefGoogle Scholar
Gupta, P. D., Popil, R., Fedosejevs, R., Offenberger, A. A., Salzmann, D. & Capjack, C. E. 1986a Appl. Phys. Lett. 48, 103.CrossRefGoogle Scholar
Gupta, P. D., Tsui, Y. Y., Popil, R., Fedosejevs, R. & Offenberger, A. A. 1986b Phys. Rev. A (to appear in May 1986 issue).Google Scholar
Gupta, P. D., Tsui, Y. Y., Popil, R., Fedosejevs, R. & Offenberger, A. A. 1986c (to be published).Google Scholar
Key, M. H., Toner, W. T., Goldsack, T. J., Kilkenny, J. D., Veats, S. A., Cunningham, P. F. & Lewis, C. L. S. 1983 Phys. Fluids, 26, 2011.CrossRefGoogle Scholar
Lewis, C. L., Cunningham, P., Pina, L., Roy, A. & Ward, J., 1982 J. Phys. D15, 69.Google Scholar
Matthews, D. L., Campbell, E. M., Ceglio, N. M., Hermes, G., Kaufmann, R., Koppel, L., Lee, R., Manes, K., Rupert, V., Slivinsky, V. W., Turner, R. & Ze, F. 1983 J. Appl. Phys. 54, 4260.CrossRefGoogle Scholar
McKen, D. C. D., Fedosejevs, R., Arnfield, M., Tomov, I. V., Domier, C. & Offenberger, A. A. 1983 Rev. Sci. Instrum. 54, 845.CrossRefGoogle Scholar
Mead, W. C., Campbell, E. M., Kruer, W. L., Turner, R. E., Hatcher, C. W., Bailey, D. S., Lee, P. H. Y., Foster, J., Tirsell, K. G., Prutt, B., Holmes, N. C., Trainor, J. T., Stradling, G. L., Lasinski, B.Max, C. E. & Ze, F. 1984 Phys. Fluids. 27, 1301.CrossRefGoogle Scholar
Meyer, B. & Thiell, G. 1984 Phys. Fluids, 27, 302.CrossRefGoogle Scholar
Mora, P. 1982 Phys. Fluids, 25, 1051.CrossRefGoogle Scholar
Murray, J. R., Goldhar, J., Eimerl, D. & Szoke, A. 1979 IEEE J. Quantum Electron, QE-15, 342.CrossRefGoogle Scholar
NG, A., Pasini, D., Celliers, P., Parfeniuk, D., Dasilva, L. & Kwan, J. 1984 Appl. Phys. Lett. 45, 1046.CrossRefGoogle Scholar
Nishimura, H., Azechi, H., Yamada, K., Tamura, A., Inada, Y., Matsuoka, F., Hamada, M., Suzuki, Y., Nakai, S. & Yamanaka, C. 1981 Phys. Rev. A23, 2011.CrossRefGoogle Scholar
Offenberger, A. A. 1981 Modern Plasma Physics, Iaea-Smr-61/113, 437.Google Scholar
Pasini, D., NG, A. & Barnard, A. J. 1984 Appl. Opt. 23, 762.CrossRefGoogle Scholar
Pert, G. J. 1974 Plasma Phys. 16, 1019.CrossRefGoogle Scholar
Popil, R., Haromy, A., Fedosejevs, R. & Offenberger, A. A. 1986a (to be published).Google Scholar
Popil, R., Fedosejevs, R. & Offenberger, A. A. 1986b Rev. Sci. Inst. (to appear in June 1986 issue).Google Scholar
Salzmann, D. & Krumbein, A., 1978 J. Appl. Phys. 49, 3229.CrossRefGoogle Scholar
Yaakobi, B., Boehly, T., Bourke, P., Conturie, Y., Craxton, R. S., Delettrez, J., Forsyth, J. M., Frankel, R. D., Goldman, L. M., McCrory, R. L., Richardson, M. C., Seka, W., Schwartz, D. & Soures, J. M. 1981 Opt. Comm. 39, 175.CrossRefGoogle Scholar
Zozulya, A. A., Silin, V. P. & Tikhonchuk, V. T. 1983 Jetp Lett. 38, 52.Google Scholar