Hostname: page-component-7d684dbfc8-jr2wd Total loading time: 0 Render date: 2023-09-27T13:14:34.229Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

The evaluation of transmutation of hazardous nuclear waste of 90Sr, into valuable nuclear medicine of 89Sr by ultraintense lasers

Published online by Cambridge University Press:  14 April 2010

S. K. Sadighi
Department of Physics, Sharif University of Technology, 11365-9161, Tehran, Iran
R. Sadighi-Bonabi*
Department of Physics, Sharif University of Technology, 11365-9161, Tehran, Iran
Address correspondence and reprint requests to: R. Sadighi-Bonabi, Department of Physics, Sharif University of Technology, 11365-9161, Tehran, Iran. E-mail:


The analytical evaluation of the capability of Bremsstrahlung highly directional energetic γ-beam to induce photo transmutation of 90Sr (γ,n) 89Sr is presented. Photo transmutation of hazardous nuclear waste of 90Sr, one of the two main sources of heat and radioactivity in spent fuel into valuable nuclear medicine radioisotope of 89Sr is explained. Based on the calculations, a fairly decent fraction of gamma rays in this range are used in transmuting of 90Sr into 89Sr where according to the available experimental data it is shown that by irradiating a 1-cm thick 90Sr sample with lasers of intensity of 1021 W/cm2 and repletion rate of 100 Hz for an hour, the reaction activity would be 1.45 kBq. It is shown that there is not a linear relationship between the growth of the activity and increasing the laser intensity, but there is a dramatic increase in the growth rate especially between 1020and 1021 W/cm2. In this work, the advantage of photonuclear transmutation over the neutron capture transmutation for 90Sr isotope is also discussed.

Research Article
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Ayvazyan, V., Baboi, N., Bähr, J., Balandin, V., Beutner, B., Brandt, A., Bohnet, I., Bolzmann, A., Brinkmann, R., Brovko, O.I., Carneiro, J.P., Casalbuoni, S., Castellano, M., Castro, P., Catani, L., Chiadroni, E., Choroba, S., Cianchi, A., Delsim-Hashemi, H., Di Pirro, G., Dohlus, M., Düsterer, S., Edwards, H.T., Faatz, B., Fateev, A.A., Feldhaus, J., Flöttmann, K., Frisch, J., Fröhlich, L., Garvey, T., Gensch, U., Golubeva, N., Grabosch, H.-J., Grigoryan, B., Grimm, O., Hahn, U., Han, J.H., Hartrott, M.V., Honkavaara, K., Hüning, M., Ischebeck, R., Jaeschke, E., Jablonka, M., Kammering, R., Katalev, V., Keitel, B., Khodyachykh, S., Kim, Y., Kocharyan, V., Körfer, M.Kollewe, M., Kostin, D., Krämer, D., Krassilnikov, M., Kube, G., Lilje, L., Limberg, T., Lipka, D., Löhl, F., Luong, M., Magne, C., Menzel, J., Michelato, P., Miltchev, V., Minty, M., Möller, W.D., Monaco, L., Müller, W., Nagl, M., Napoly, O., Nicolosi, P., Nölle, D., Nũnez, T., Oppelt, A., Pagani, C., Paparella, R., Petersen, B., Petrosyan, B., Pflüger, J., Piot, P., Plönjes, E., Poletto, L., Proch, D., Pugachov, D., Rehlich, K., Richter, D., Riemann, S., Ross, M., Rossbach, J, Sachwitz, M., Saldin, E.L., Sandner, W., Schlarb, H., Schmidt, B., Schmitz, M., Schmüser, P., Schneider, J.R., Schneidmiller, E.A., Schreiber, H.-J., Schreiber, S., Shabunov, A.V., Sertore, D., Setzer, S., Simrock, S., Sombrowski, E., Staykov, L., Steffen, B., Stephan, F., Stulle, F., Sytchev, K.P., Thom, H., Tiedtke, K., Tischer, M., Treusch, R., Trines, D., Tsakov, I., Vardanyan, A., Wanzenberg, R., Weiland, T., Weise, H., Wendt, M., Will, I., Winter, A., Wittenburg, K., Yurkov, M.V., Zagorodnov, I., Zambolin, P. & Zapfe, K. (2006). First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J. D 37, 297303.Google Scholar
Azizi, N., Hora, H., Miley, G.H., Malekynia, B., Ghoranneviss, M. & He, X. (2009). Threshold for laser driven block ignition for fusion energy from hydrogen boron-11. Laser Part. Beams 27, 201206.Google Scholar
Behrens, R., Schwoerer, H., Dusterer, S., Ambrosi, P., Pretzler, G., Karsch, S. & Sauerbrey, R. (2003). A thermoluminescence detector-based few-channel spectrometer for simultaneous detection of electrons and photons from relativistic laser produced plasmas. Rev. Sci. Instrum. 74, 961968.Google Scholar
Bessonov, E.G., Gorbunkov, M.V., Ishkhanov, B.S., Kostryukov, P.V., Maslova, Yu.Ya., Shvedunov, V.I., Tunkin, V.G. & Vinogradov, A.V. (2008). Laser-electron generator for X-ray applications in science and technology. Laser Part. Beams 26, 489495.Google Scholar
Chyla, W.T. (2006). On generation of collimated high-power gamma beams. Laser Part. Beams 24, 143156.Google Scholar
Cowan, T.E., Hunt, A.W., Phillips, T.W., Wilks, S.C., Perry, M. D., Brown, C., Foutain, W., Hatchett, S., Johnson, J., Key, M.H., Parnell, T., Pennington, D.M., Snavely, R.A. & Takahashi, Y. (2000). Photonuclear fission from high energy electron from ultraintense laser-solid interaction. Phys. Rev. Lett. 84, 903906.Google Scholar
Cowan, T.E., Perry, M.D., Key, M.H., Ditmire, T.R., Hatchett, S.P., Henry, E.A., Moody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C., Young, P.E., Takahash, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W. & Kühl, T. (1999). High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments. Laser Part. Beams 17, 773783.Google Scholar
Gahn, C., Tsakiris, G.D., Pretzler, G., Witte, K.J., Thirolf, P., Habs, D., Delfin, C. & Wahlstrom, C.G. (2002). Generation of MeV electrons and positrons with femtosecond pulses from a table-top laser system. Phys. Plasmas 9, 987.Google Scholar
Galy, J., Magill, J., Schenkel, R., Mckenna, P., Ledingham, K.D.W., Spencer, I., Mccanny, T., Singhal, R.P., Beg, K., Krushelnick, F.N., Wei, M.S., Norreys, P.A., Lancaster, K.L., Clarke, R.J. & Clark, E.L. (2002). Central laser facility. Rutherford Appleton Laboratory Annual Report No. 2001–029. Oxfordshire, UK: Rutherford Appleton Laboratory.Google Scholar
Giammarile, F., Mognetti, T. & Resche, I. (2001). Bone pain palliation with strontium-89 in cancer patients with bone metastases. Quant. J. Nucl. Med. 45, 78.Google Scholar
Giulietti, D., Galimberti, M., Giulietti, A., Gizzi, L.A., Labate, L. & Tomassini, P. (2005). The laser-matter interaction meets the high energy physics: Laser-plasma accelerators and bright X/γ-ray sources. Laser Part. Beams 23, 309314.Google Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.Google Scholar
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Yu. & Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser Part. Beams 24, 1526.Google Scholar
Habs, D., Tajima, T., Schreiber, J., Barty, C.P.J., Fujiwara, M. & Thirolf, P.G. (2009). Vision of nuclear physics with photo-nuclear reactions by laser-driven γ beams. Euro. Phys. J. D doi: 10.1140/epjd/e2009-00101-2.Google Scholar
Harada, H., Sekine, T., Hatsukawa, Y., Shigeta, N., Kobayashi, K., Ohtsuki, T. & Katoh, T. (1994). Measurement of the thermal neutron cross-section of the 90Sr (n, γ)91Sr reaction. J. Nucl. Sci. Tech. 31, 173179.Google Scholar
Harada, H., Watanabe, H., Sekine, T., Hatsukawa, Y., Kobayashi, K. & Kotah, T. (1990). Measurement of thermal neutron cross-section of 137Cs(n, γ)138Cs reaction. J. Nucl. Sci. Technol. 27, 577580.Google Scholar
Hatsukawa, Y., Shinohara, N., Hata, K., Kobayashi, K., Motoishi, S., Tanase, M., Katoh, T., Nakamura, S. & Harada, H. (1999). Thermal neutron cross-section and resonance integral of the reaction of135Cs (n, γ)136Cs: Fundamental data for the transmutation of nuclear waste. J. Radioanal. Nucl. Chem. 239, 455458.Google Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects. Laser Part. Beams 27, 207222.Google Scholar
Hora, H., Miley, G. H., Azizi, N., Malekynia, B., Ghoranneviss, M. & He, X. (2009). Nonlinear force driven plasma blocks igniting solid density hydrogen boron: Laser fusion energy without radioactivity. Laser Part. Beams 27, 491496.Google Scholar
Imasaki, K., Li, D., Miyamoto, S., Amano, S., Motizuki, T. & Asano, Y. (2008). Gamma-ray beam transmutation. Energy Conver. Manag. 49, 19221927.Google Scholar
International Atomic Energy Agency. (2000). Handbook on Photonuclear Data for Applications-Cross-sections and Spectra. Vienna: IAEA-TECDOC.Google Scholar
Ledingham, K.W.D., Magill, J., Mckenna, P., Yang, J., Galy, J., Schenkel, R., Rebizant, J., Mccanny, T., Shimizun, S., Robson, L., Singhal, R.P., Wei, M.S., Mangles, S.P.D., Nilson, P., Krushelnick, K., Clarke, R.J. & Norreys, P.A. (2003). Laser-driven photo-transmutation of 129I–a long-lived nuclear waste product. J. Phys. D Appl. Phys. 36, L79.Google Scholar
Ledingham, K.W.D., McKenna, P., McCanny, T., Shimizu, S., Yang, J.M., Robson, L., Zweit, J., Gillies, J.M., Bailey, J., Chimson, G.N., Clarke, R.J., Neely, D., Norreys, P.A., Collier, J.L., Singhal, R.P., Wei, M., Mangles, S.P.D., Nilson, P., Krushelnick, K. & Zepf, M. (2004). High power laser production of short-lived isotopes for positron emission tomography. J. Phys. D Appl. Phys. 37, 2341.Google Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.Google Scholar
Li, L., Liu, L., Xu, Q., Chen, G., Chang, L., Wan, H. & Wen, J. (2009). Relativistic electron beam source with uniform high-density emitters by pulsed power generators. Laser Part. Beams 27, 335344.Google Scholar
Magill, J., Schwoeror, H., Ewald, F., Galy, J., Schenkel, R. & Sauerbrey, R. (2003). Laser transmutation of iodine-129. Appl. phys. B: Lasers Opt. 77, 387.Google Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399405.Google Scholar
Maschek, W., Stanculescu, A., Arien, B., et al. (2008). Report on intermediate results of the IAEA CRP on studies of advanced reactor technology options for effective incineration of radioactive waste. Energy Conver. Manage. 49, 18101819.Google Scholar
McCall, G.H. (1982). Calculation of X-ray bremsstrahlung and characteristic line emission produced by a Maxwellian electron distribution. J. Phys. D: Appl. Phys. 15, 823831.Google Scholar
Nakamura, S., Furutaka, K., Wada, H., Fujii, T., Yamana, H., Katoh, T. & Harada, H. (2001). Measurement of the thermal neutron capture cross-section and the resonance integral of the 90Sr(n, γ)91Sr reaction. J. Nucl. Sci. Technol. 38, 10291034.Google Scholar
Niu, K., Mulser, P. & Drska, L. (1991). Beam generations of three kinds of charged particles. Laser Part. Beams 9, 149165.Google Scholar
Norreys, P.A., Santala, M., Clark, E., Zepf, M., Watts, I., Beg, F.N., Krushelnick, K., Tatarakis, M., Dangor, A.E., Fang, X., Graham, P., McCanny, T., Singhal, R.P., Ledingham, K.W.D., Cresswell, A., Sanderson, D.C.W., Magill, J., Machacek, A., Wark, J.S., Allott, R., Kennedy, B. & Neely, D. (1999). Observation of a highly directional gamma-ray beam from ultra-short, ultra-intense laser pulse interactions with solids. Phys. Plasmas 6, 21502156.Google Scholar
Pampin, R. & Davis, A. (2008). Fusion novel tools for estimation of activation dose: Description, Preliminary comparison and nuclear data requirements. Page 8.Google Scholar
Perry, M.D., Pennington, D., Stuart, B.C., Tietbohl, G., Britten, J.A., Brown, C., Herman, S., Golick, B., Kartz, M., Miller, J., Powell, H.T., Vergino, M. & Yanovsky, V. (1999). Petawatt laser pulses. Opt. Lett. 24, 160162.Google Scholar
Renner, O., Juha, L., Krasa, J., Krousky, E., Pfeifer, M., Velyhan, A., Granja, C., Jakubek, J., Linhart, V., Slavicek, T., Vykydal, Z., Pospisil, S., Kravarik, J., Ullschmied, J., Andreev, A.A., Kampfer, T., Uschmann, I. & Forster, E. (2008). Low-energy nuclear transitions in subrelativistic laser-generated plasmas. Laser Part. Beams 26, 249257.Google Scholar
Sadighi-Bonabi, R. & Kokabi, O. (2006). Evaluation of Transmutation of 137Cs (γ, n)136Cs using ultra intense lasers. Ch. Phys. Lett. 6, 14341436.Google Scholar
Sadighi-Bonabi, R., Irani, E., Safaie, B., Imani, Kh., Silatani, M. & Zare, S. (2009 a). Possibility of ultra-intense laser transmutation of 93Zr (g, n) 92Zr a long-lived nuclear waste into a stable isotope. Energy Conver. Manage. doi: 10.1016.Google Scholar
Sadighi-Bonabi, R., Navid, H.A. & Zobdeh, P. (2009 b). Observation of quasi mono-energetic electron bunches in the new ellipsoid cavity model. Laser Part. Beams 27, 223231.Google Scholar
Sadighi-Bonabi, R., Rahmatallahpor, S., Navid, H.A., Lotfi, E., Zobdeh, P., Reiazi, Z., Nik, M.B. & Mohamadian, M. (2009 c). Modification of the energy of mono-energetic electron beam by ellipsoid model for the cavity in the bubble regime. Contrib. Plasma Phys. 49, 4954.Google Scholar
Sadighi-Bonabi, R., Habibi, M. & Yazdani, E. (2009 d). Improving the relativistic self-focusing of intense laser beam in plasma using density transition. Phys. Plasmas 16, 083105.Google Scholar
Sadighi-Bonabi, R., Yazdani, E., Habibi, M. & Lotfi, E. (2009 e). Comment on plasma density ramp for relativistic self-focusing of an intense laser. J. Opt. Soc. Am. B. 24.Google Scholar
Sherman, N.K., Burnett, N.H. & Enright, G.D. (1987). In new developments in particle beam acceleration techniques. Edited by Turner, S. (CERN 87-11, Geneva, 1987), Vol. 62, 675.Google Scholar
Shkolnikov, P.L., Kaplan, A.E., Pukhov, A. & Meyer-Ter-Vehn, J. (1997). Positron and γ-photon production and nuclear reactions in cascade processes initiated by sub-terawatt femtosecond laser. Appl. Phys. Lett. 71, 3471.Google Scholar
Strickland, D. & Morou, G. (1985). Compression of amplified chirped optical pulses. Opt. Common. 56, 219.Google Scholar
Tajima, T. & Ejiri, H. (2003). Photonuclear Reactions and Nuclear Transmutation. Japan: Hyougo.Google Scholar
Takashima, R., Hasegama, S., Nemoto, K. & Kato, K. (2005). Possibility of transmutation of 135Cs by ultraintense laser. Appl. Phys. Lett. 86, 011501.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorptions of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.Google Scholar
Wydler, P. & Baetsle, L.H. (2000). Closing the Nuclear Fuel Cycle: Issues and Perspectives, in Actinide and Fission Product Partitioning and Transmutation, Information Exchange Meeting, OECD Nuclear Energy Agency (Dec 2001),(Madrid, Spain.)Google Scholar
Yazdani, E., Cang, Y., Sadighi-Bonabi, R., Hora, H. & Osman, F.H. (2009). Layers from initial Rayleigh density profile by directed nonlinear force driven plasma blocks for alternative fast ignition. Laser Part. Beams 27, 149156.Google Scholar
Zobdeh, P., Sadighi-Bonabi, R. & Afarideh, H. (2008). New ellipsoid cavity model for high-intensity laser-plasma interaction. Plasma Dev. Oper. 16, 105114.Google Scholar