Hostname: page-component-546b4f848f-hhr79 Total loading time: 0 Render date: 2023-06-01T03:42:39.668Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Electron acceleration in the wakefield of asymmetric laser pulses

Published online by Cambridge University Press:  08 January 2009

B.-S. Xie*
Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing, People's Republic of China College of Nuclear Science and Technology, Beijing Normal University, Beijing, People's Republic of China
A. Aimidula
Department of physics, Xinjiang University, Urumqi, People's Republic of China
J.-S. Niu
Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing, People's Republic of China College of Nuclear Science and Technology, Beijing Normal University, Beijing, People's Republic of China
J. Liu
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
M.Y. Yu
Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou, People's Republic of China Institut für Theoretische Physik I, Ruhr-Universität Bochum, Bochum, Germany
Address correspondence and reprint requests to: Bai-Song Xie, Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China. E-mail:


Electron acceleration in the plasma wakefield driven by asymmetric laser pulses is investigated analytically. It is found that the asymmetric laser pulse can significantly modify the phase portrait of the electron dynamics and enhance the maximum energy of the accelerated electrons. There exists an optimum ratio of the lengths of the rising and falling segments of the asymmetric laser-pulse. A linear scaling law relating the accelerated electrons' energy and the plasma density is obtained. This result differs from the power-law dependence often associated with symmetric laser pulses.

Research Article
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Balakirev, V.A., Karas, I.V., Levchenko, V.D. & Bornatici, M. (2004). Charged particle acceleration by an intense wake-field excited in plasmas by either laser pulse or relativistic electron bunch. Laser Part. Beams 22, 383392.Google Scholar
Balakirev, V.A., Karas, V.I. & Levchenko, V.D. (2001). Plasma wake-field excitation by relativistic electron bunches and charged particle acceleration in the presence of external magnetic field. Laser Part. Beams 19, 597604.Google Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N-2 and He gas targets. Laser Part. Beams 26, 147155.Google Scholar
Esarey, E., Schroeder, C.B., Shadwick, B.A., Wurtele, J.S. & Leemans, W.P. (2000). Nonlinear theory of nonparaxial laser pulse propagation in plasma channels. Phys. Rev. Lett. 84, 30813084.Google Scholar
Esirkepov, T., Bulanov, S.V., Yamagiwa, M. & Tajima, T. (2006). Electron, positron, and photon wakefield acceleration: Trapping, wake overtaking, and ponderomotive acceleration. Phys. Rev. Lett. 96, 014803.Google Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nat. 431, 541544.Google Scholar
Geddes, C.G.R., Toth, Cs., Van Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nat. 431, 538541.Google Scholar
Gordon, D.F., Hafizi, B., Hubbard, R.F., Penano, J.R., Sprangle, P. & Ting, A. (2003). Asymmetric self-phase modulation and compression of short laser pulses in plasma channels. Phys. Rev. Lett. 90, 215001.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hora, H. (2006). Smoothing and stochastic pulsation at high power laser-plasma inter-action. Laser Part. Beams 24, 455463.Google Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.Google Scholar
Joshi, C. (2007). The development of laser- and beam-driven plasma accelerators as an experimental field. Phys. Plasmas 14, 055501.Google Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser Part. Beams 26, 397409.Google Scholar
Li, B., Ishiguro, S., Skoric, M.M., Takamaru, H. & Sato, T. (2004). Acceleration of high-quality well-collimated return beam of relativistic electrons by intense laser pulse in a low-density plasma. Laser Part. Beams 22, 307314.Google Scholar
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Y. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225234.Google Scholar
Lotov, K.V. (2001). Laser wakefield acceleration in narrow plasma-filled channels. Laser Part. Beams 19, 219222.Google Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nat. 431, 535538.Google Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.Google Scholar
Nakamura, K. (2000). Particle acceleration by ultraintense laser interactions with beams and plasmas. Laser Part. Beams 18, 519528.Google Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.Google Scholar
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 5160.Google Scholar
Pukhov, A., Gordienko, S., Kiselev, S. & Kostyukov, I. (2004). The bubble regime of laser-plasma acceleration: monoenergetic electrons and the scalability. Plasma Phys. Control. Fusion 44, B179B186.Google Scholar
Reitsma, A.J.W. & Jaroszynski, D.A. (2004). Coupling of longitudinal and transverse motion of accelerated electrons in laser wakefield acceleration. Laser Part. Beams 22, 407413.Google Scholar
Reitsma, A.J.W., Cairns, R.A., Bingham, R. & Jaroszynski, D.A. (2005). Efficiency and energy spread in laser-wakefield acceleration. Phys. Rev. Lett. 94, 085004.Google Scholar
Sheng, Z.M., Mima, K., Sentoku, Y., Jovanovic, M.S., Yaguchi, T., Zhang, J. & Meyer-Ter-Vehn, J. (2002). Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma. Phys. Rev. Lett. 88, 055004.Google Scholar
Shi, Y.-J. (2007). Laser electron accelerator in plasma with adiabatically attenuating density. Laser Part. Beams 25, 259265.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.Google Scholar
Xie, B.S. & Wang, N.C. (2002). Optimum effect of asymmetric laser pulse shape on relativistic laser-plasma wake field. Phys. Scripta 65, 444446.Google Scholar
Xie, B.S., Wu, H.C., Wang, H.Y., Wang, N.Y. & Yu, M.Y. (2007). Analysis of the electromagnetic fields and electron acceleration in the bubble regime of laser-plasma interaction. Phys. Plasmas 14, 073103.Google Scholar
Yu, M.Y., Shukla, P.K. & Spatschek, K.H. (1978). Localization of high-power laser pulses in plasmas. Phys. Rev. A 18, 15911596.Google Scholar