Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-20T13:27:32.579Z Has data issue: false hasContentIssue false

Development of a cryocatcher prototype and measurement of cold desorption

Published online by Cambridge University Press:  04 May 2016

L. Bozyk*
Affiliation:
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Hessen, Germany
D.H.H. Hoffmann
Affiliation:
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Hessen, Germany
H. Kollmus
Affiliation:
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Hessen, Germany
P. Spiller
Affiliation:
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Hessen, Germany
*
Address correspondence and reprint requests to: L. Bozyk, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Hessen, Germany. E-mail: L.Bozyk@gsi.de

Abstract

The superconducting synchrotron SIS100 of the FAIR accelerator project will provide heavy ion beams of highest intensities. SIS100 is the first synchrotron with a special design, optimized for the control of ionization beam loss. Ionization beam loss is the most pronounced loss mechanism at operation with high-intensity, intermediate charge state heavy ions. The new synchrotron layout comprises an ion catcher system, which in combination with a charge separator lattice shall suppress dynamic vacuum effects.

A prototype cryogenic ion catcher, including a dedicated cryostat has been designed, manufactured, and tested under realistic conditions with beams from the heavy-ion synchrotron SIS18 at GSI. The gas desorption induced by the impact of heavy ions on this cryocatcher has been measured. For the very first time, a rise of desorption yield with increasing beam energy has been observed. However, measurements at room temperature have confirmed the known decrease of the pressure rise in the investigated energy regime. A transition temperature of 18 K, underneath hydrogen is adsorbed, could be verified several times. The results are significant and used to predict the ionization beam loss at operation of SIS100 at full-beam intensity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bender, M. (2008). Untersuchung der Mechanismen Schwerioneninduzierter Desorption an Beschleunigerrelevanten Materialien. Dissertation. Germany: Goethe-Universität Frankfurt.Google Scholar
Bohlen, T.T., Böhlen, F., Cerutti, M.P.W., Chin, A., Fassò, A., Ferrari, P.G., Ortega, A., Mairani Sala, P.R., Smirnov, G. & Vlachoudis, V. (2014). The FLUKA code: Developments and challenges for high energy and medical applications. Nucl. Data Sheets 120, 211214.Google Scholar
Bozyk, L., Hoffmann, D.H.H., Spiller, P. & Kollmus, H. (2010). Development of a cryocatcher prototype for SIS100. Proc. of IPAC'10, 4238–4240.Google Scholar
Bozyk, L., Hoffmann, D.H.H., Spiller, P., Kollmus, H. & Wengenroth, M. (2011). Construction and test of a cryocatcher prototype for SIS100. Proc. of IPAC'11, 1527–1529.Google Scholar
Bozyk, L., Spiller, P. & Kollmus, H. (2012). Development of a cryocatcher-system for SIS100. Proc. of IPAC'12, 3237–3239.Google Scholar
Bozyk, L. (2012). Entwicklung und Test eines Kryokollimator-Prototypen zur Kontrolle des dynamischen Vakuums im SIS100. Dissertation, Germany: TU-Darmstadt.Google Scholar
Bozyk, L. & Spiller, P. (2014). Measurement of beam ioniziation loss in SIS18. Proc. of IPAC'14, 864–866.Google Scholar
Ferrari, A., Sala, P.R., Fassò, A. & Ranft, J. (2005). FLUKA: a multi-particle transport code. CERN-2005-10, INFN/TC_05/11, SLAC-R-773.Google Scholar
Kersevan, R. & Pons, J.-L. (2009). Introduction to MOLFLOW+: New graphical processing unit-based Monte Carlo code for simulating molecular flows and for calculating angular coefficients in the compute unified device architecture environment. J. Vac. Sci. Technol. A 27, 1017.Google Scholar
Kollmus, H., Krämer, A., Bender, M., Bellachioma, M.C., Reich-Sprenger, H., Mahner, E., Hedlund, E., Westerberg, L., Malyshev, O.B., Leandersson, M. & Edqvist, E. (2009). Energy scaling of the ion-induced desorption yield for perpendicular collisions of Ar and U with stainless steel in the energy range of 5 and 100 MeV/u. J. Vac. Sci. Technol. A 27, 245, 245247.Google Scholar
Molvik, A.W., Kollmus, H., Mahner, E., Kireeff Covo, M., Bellachioma, M.C., Bender, M., Bieniosek, F.M., Hedlund, E., Krämer, A., Kwan, J., Malyshev, O.B., Prost, L., Seidl, P.A., Westenskow, G. & Westerberg, L. (2007). Heavy-ion-induced electronic desorption of gas from metals. Phys. Rev. Lett. 98, 064801.CrossRefGoogle ScholarPubMed
Omet, C. (2009). Kollimatorsystem zur stabilisierung des restgasdrucks im schwerionensynchrotron SIS18. Dissertation. Germany: TU-Darmstadt.Google Scholar
Puppel, P. (2012). Orts- und zeitaufgelöste simulation strahlinduzierter dynamischer vakuumeffekte in schwerionensynchrotrons. Dissertation. Germany: Goethe-Universität Frankfurt.Google Scholar
Puppel, P., Spiller, P. & Ratzinger, U. (2011). Dynamic vacuum stability in SIS100. Proc. of IPAC'11, 2724–2726.Google Scholar
Rothard, H., Kroneberger, K., Clouvas, A., Veje, E., Lorenzen, P., Keller, N., Kemmler, J., Meckbach, W. & Groeneveld, K.O. (1990). Secondary-electron yields from thin foils: a possible probe for the electronic stopping power of heavy ions. Phys. Rev. A 41, 25212535.Google Scholar
Spiller, P., Blasche, K., Franczak, B., Stadlmann, J. & Omet, C. (2004). Optimization of the SIS100 lattice and a dedicated Collimation System for ionisation losses. High Intensity and High Brightness Hadron Beams, vol. 773 in AIP Conf. Proc., 40–44. American Institute of Physics, Melville, NY.Google Scholar
Stadlmann, J., Blasche, K., Franczak, B., Omet, C., Pyka, N., Spiller, P.J. & Kovalenko, A.D. (2006). Proc. of EPAC 2006, Edinburgh, Scotland, 214–216.Google Scholar