Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-18T05:21:25.719Z Has data issue: false hasContentIssue false

Conceptual design of a 170-MJ hydrogen fluoride laser for fusion

Published online by Cambridge University Press:  09 March 2009

C. R. Phipps
Affiliation:
Gordon Godfrey Visiting Fellow, Department of Theoretical Physics, University of New South Wales, P.O. Box 1, Kensington, N.S.W. 2033, Australia

Abstract

We have completed the conceptual design of a 170-MJ laser system consisting of two identical, opposing, 0·4 M-litre, 84-MJ HF subsystems, which together deliver 105 ‘useful’ MJ in 50 ns (FWHM duration) to a laser-fusion target during its hydrodynamic drive interval. We achieved extreme design simplicity by eliminating most optics, using an inexpensive, very-high-energy-density gain medium, propagating the laser beam at the maximum fluence permitted by optical breakdown in the laser medium, and by using replicated simple subsystems for pulsed power. The infrared spectrum of the HF laser lies outside the ultraviolet range favored by the U.S. laser fusion program for optimum target coupling efficiency. However, the laser architecture we describe is an alternative for laser fusion systems which offers dramatic improvements in simplicity, compactness, and efficiency, which advantages will be even more pronounced when equally efficient, visible-wavelength chemical lasers become available.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, G. P. & Wenzel, R. G. 1973 I.E.E.E. J. Quantum Electron. QE-9, 491.Google Scholar
Basov, N. G. et al. 1971 Appl. Opt. 10, 1814.CrossRefGoogle Scholar
Basov, N. G. et al. 1970 I.E.E.E. J. Quantum Electron. QE-6, 183.Google Scholar
Batovskii, O. M. et al. 1969 JETP Lett. 9, 200 and 9, 341.Google Scholar
Beck, R., Englisch, W. & Gürs, K. 1980 Table of Laser Lines in Gases and Vapors, 3rd. Edition (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Blumlein, A. D. 1948 U.S. Patent No. 2, 465, 840.Google Scholar
Brueckner, A. K. 1969 in Bromberg, L. 1983 Fusion: Science, Politics and the Invention of a New Energy Source (MIT Press, Cambridge, MA).Google Scholar
Cha, H. & Setzer, D. W. 1987 J. Phys. Chem. 91, 3758.CrossRefGoogle Scholar
Cha, H. & Setzer, D. W. 1989 J. Phys. Chem., to appear.Google Scholar
Cicchitelli, L. et al. 1988 Laser and Particle Beams 6, 163.CrossRefGoogle Scholar
Czyzak, S. 1975 private communication.Google Scholar
Deutsch, T. F. 1967 Appl. Phys. Letters 10, 234.CrossRefGoogle Scholar
Fawley, W. 1986 private communication.Google Scholar
Fujioka, T. et al. 1985 J. Appl. Phys. 58, 3975.CrossRefGoogle Scholar
Gerber, R. A. 1986 private communication.Google Scholar
Gerber, R. A. & Patterson, E. L. 1976 J. Appl. Phys. 47, 3524.CrossRefGoogle Scholar
Gerber, R. A. et al. 1974 Appl. Phys. Lett. 25, 281.CrossRefGoogle Scholar
Gill, D. H. & Dougal, A. 1965 Phys. Rev. Lett. 15, 845.CrossRefGoogle Scholar
Gregg, D. W. et al. 1971 Chem Phys. Lett. 8, 609.CrossRefGoogle Scholar
Greiner, N. R. 1973 I.E.E.E. J. Quantum Electron. QE-9, 1123.Google Scholar
Grey Morgan, C. 1978 Sic. Prog. Oxf. 65, 31.Google Scholar
Gross, R. W. F., Cohen, N. & Jacobs, T. A. 1968 J. Chem. Phys. 48, 3821.CrossRefGoogle Scholar
Hoffman, J. M. & Hays, G. N. 1981 Report SAND81–1472 (Sandia National Laboratories) pp. 2428.Google Scholar
Hora, H. et al. 1989 Proc. 16th European Conference on Controlled Fusion and Plasma Physics, Venice paper P2D9 Europhys. Abstr. 13B, Part II, p. 869.Google Scholar
Inagaki, H. et al. 1986 J. Appl. Phys. 59, 324.CrossRefGoogle Scholar
Johann, U. et al. 1986 Phys. Rev. A34, 1084.CrossRefGoogle Scholar
Kannari, F., Inagaki, H. & Obara, M. 1986 Appl. Phys. Lett. 48, 266.CrossRefGoogle Scholar
Kannari, F. 1988, private communication.Google Scholar
Kasotakis, G. et al. 1989 Nucl Inst. Meth. 278A, 110.CrossRefGoogle Scholar
Kompa, K. L. & Pimentel, G. C. 1967 J. Chem. Phys. 47, 857.CrossRefGoogle Scholar
Kurnit, N. 1986, private communication.Google Scholar
Lawson, J. 1957 Proc. Phys. Soc. (Lond.) B70, 6.CrossRefGoogle Scholar
Mangano, J. A. et al. 1975 Appl. Phys. Lett. 27, 293.CrossRefGoogle Scholar
Miley, G. 1976 Fusion Energy Conversion (American Nuclear Society) p. 21.Google Scholar
Miller, R. B. 1982 An Introduction to the Physics of Intense Charged Particle Beams (Plenum, New York) p. 11.CrossRefGoogle Scholar
Moreno, J. B., Fisk, G. A. & Hoffman, J. M. 1977 J. Appl. Phys. 48, 238.CrossRefGoogle Scholar
Nuckolls, J. et al. 1972 Nature 239, 139.CrossRefGoogle Scholar
Owadono, Y. 1988 private communication.Google Scholar
Parker, J. H. & Pimentel, G. C. 1968 J. Chem. Phys. 48, 5273.CrossRefGoogle Scholar
Patterson, E. L. & Gerber, R. A. 1976 Ultra-High Power Lasers (Society of Photo-Optical Instrumentation Engineers) vol. 76, p. 44.Google Scholar
Patterson, E. L. et al. 1979 J. Appl. Phys. 50, 2643.CrossRefGoogle Scholar
Phipps, C. R. et al. 1988 J. Appl. Phys. 64, 1083.CrossRefGoogle Scholar
Pummer, H. & Kompa, K. L. 1973 Appl. Phys. Lett. 20, 356.CrossRefGoogle Scholar
Robinson, C. P., Jensen, R. J. & Kolb, A. 1973 I.E.E.E. J. Quantum Electron. QE-9, 963.Google Scholar
Rossi, B. 1952 High-Energy Particles (Prentice-Hall, Englewood Cliffs, N.J).Google Scholar
Sandia National Laboratories 1978 report SAND78–2306, p. 10.Google Scholar
Semenoff, N. 1929 Chem. Rev. 6, 374.CrossRefGoogle Scholar
Shen, Y. R. 1984 The Principles of Nonlinear Optics (Wiley, New York) pp. 530536.Google Scholar
Sze, R. C. 1988, private communication.Google Scholar
U.S. National Research Council 1964 Studies in Penetration of Charged Particles in Matter (Nuclear Science Series Report No. 39, NAS-NRS Publication 1133, National Technical Information Service).Google Scholar
Yoshida, S. et al. 1989 Appl. Phys. Lett. (to appear June 12).Google Scholar
Zharov, V. T. et al. 1972 JETP Lett. 16, 154.Google Scholar