Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-20T23:14:04.563Z Has data issue: false hasContentIssue false

Charge state of Zn projectile ions in partially ionized plasma: Simulations

Published online by Cambridge University Press:  06 March 2006

Faculty of Physics, Weizmann Institute of Science, Rehovoth, Israel
Faculty of Physics, Weizmann Institute of Science, Rehovoth, Israel Soreq NRC, Yavne, Israel
Institut für Angewandte Physik, TU-Darmstadt, Germany
Institut für Angewandte Physik, TU-Darmstadt, Germany
Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany


This study deals with the simulation of the experimental study of Roth et al. (2000) on the interaction of energetic Zn projectiles in partially ionized laser produced carbon targets, and with similar type experiments. Particular attention is paid to the specific contributions of the K and L shell target electrons to electron recombination in the energetic Zn ionic projectile. The classical Bohr–Lindhard model was used for describing recombination, while quantum mechanical models were also introduced for scaling the L to K cross-section ratios. It was found that even for a hydrogen-like carbon target, the effect of the missing five bound electrons brings about an increase of only 0.6 charge units in the equilibrium charge state as compared to the cold target value of 23. A collisional radiative calculation was employed for analyzing the type of plasma produced in the experimental study. It was found that for the plasma conditions characteristic of this experiment, some fully ionized target plasma atoms should be present. However in order to explain the experimentally observed large increase in the projectile charge state a very dominant component of the fully ionized plasma must comprise the target plasma. A procedure for calculating the dynamic evolvement of the projectile charge state within partially ionized plasma is also presented and applied to the type of plasma encountered in the experiment of Roth et al. (2000). The low temperature and density tail on the back of the target brings about a decrease in the exiting charge state, while the value of the average charge state within the target is dependent on the absolute value of the cross-sections.

Research Article
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Arad, R., Tsigutkin, K., Ralchenko, Yu.V. & Maron, Y. (2000). Spectroscopic investigations of a dielectric-surface-discharge plasma source. Phys. Plasmas 7, 3797.Google Scholar
Assmann, W., Huber, H., Karamian, S.A., Grüner, F., Mieskes, H.D., Andersen, J.U., Posselt, M. & Schmidt, B. (1999). Transverse cooling or heating of channeled ions by electron capture and loss. Phys. Rev. Lett. 83, 1759.Google Scholar
Barriga-Carrasco, M..D.. & Maynard, G. (2005). A 3D trajectory numerical simulation of the transport of energetic light ion beams in plasma targets. Laser Part. Beams 23, 211.Google Scholar
Betz, H.D. (1981). Heavy ion charge states. In Applied Atomic Collision Physics. Vol. 4, p. 1. New York: Academic Press.
Bohr, N. & Lindhard, J. (1954). Electron capture and loss by heavy ions penetrating through matter. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28 (7), 130.Google Scholar
Dietrich, K.-G., Hoffmann, D.H.H., Boggasch, E., Jacoby, J., Wahl, H., Elfers, M., Haas, C.R., Dubenkov, V.P. & Golubev, A.A. (1992). Charge state of fast heavy ions in a hydrogen plasma. Phys. Rev. Lett. 69, 3623.Google Scholar
Doria, D., Lorusso, A., Belloni, F., Nassisi, V., Torrisi, L. & Gammino, S. (2004). A study of the parameters of particles ejected from a laser plasma. Laser Part. Beams 22, 461.Google Scholar
DuBios, R.D. et al. (2004). Electron loss from 1.4-MeV/u U4,6,10+ ions colliding with Ne N2 and Ar targets. Phys. Rev. A 70, 032712.Google Scholar
Fisher, D.V. & Maron, Y. (2002). Effective statistical weights of bound states in plasmas. Eur. Phys. J. D 18, 93.Google Scholar
Fisher, D.V. & Maron, Y. (2003). Characterization of electron states in dense plasmas and its use in atomic kinetics modeling. J. Quant. Spectr. Rad. Transf. 81, 147.Google Scholar
Fortov, V.E. & Yakubov, I.V. (1990). Physics of No Ideal Plasma. New York: Hemisphere Publishers.
Gryzinski, M. (1965). Classical theory of atomic collisions. I:. Theory of inelastic collisions. Phys. Rev. A 138, 336.Google Scholar
Hoffmann, D.H.H., Weyrich, K. & Wahl, H. (1990). Energy loss of heavy ions in a plasma target Phys. Rev. A 42, 2313.Google Scholar
Hoffmann, D.H.H., Blazevic, A., NI, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 47.Google Scholar
Jacoby, J., Hoffmann, D.H.H., Laux, W., Müller, R.W., Wahl, H., Weyrich, K., Boggasch, E., Heimrich, B., Stöckl, C, Wetzler, H. & Miyamoto, S. (1995). Stopping of Heavy Ions in a Hydrogen Plasma. Phys. Rev. Lett. 74, 1550.Google Scholar
Knudsen, H., Haugen, H.K. & Hvelplund, P. (1981). Single-electron-capture cross-section for medium- and high-velocity, highly charged ions colliding with atoms. Phys. Rev. A 23, 597.Google Scholar
Lapicki, G. & McDaniel, F.D. (1980). Electron capture from K shells by fully stripped ions. Phys. Rev. A 22, 1896.Google Scholar
Leon, P.T., Eliezer, S., Jose, M.P. & Martinez-Val, M. (2005). Inertial fusion features in degenerate plasmas. Laser Part. Beams 23, 193.Google Scholar
Maynard, G., Chabot, M. & Gardes, D. (2000). Density effect and charge dependent stopping theories for heavy ions in the intermediate velocity regime. Nucl. Instr. Meth. B 164–165, 139146.Google Scholar
Maynard, G. (2002). Swift heavy ions in dense plasmas: The interaction process as a probe of the plasma properties. Laser Part. Beams 20, 467.Google Scholar
McGuire, J.H. & Richard, P. (1973). Procedure for computing cross-sections for single and multiple ionization of atoms in the binary-encounter approximation by the impact of heavy charged particles. Phys. Rev. A 8, 1374.Google Scholar
Mueller, D., Grisham, L., Kaganovich, I., Watson, R.L., Horvat, V. & Zaharakis, K.E. (2001). Multiple Electron Stripping of 3.4 MeV/u Kr7+ and Xe11+ in Nitrogen. Phys. Plasmas 8, 1753.Google Scholar
Mueller, D., Grisham, L., Kaganovich, I., Watson, R.L., Horvat, K.E., Zaharakis, K.E. & Peng, Y. (2002). Multiple electron stripping of heavy ion beams. Laser Part. Beams 20, 551.Google Scholar
Meyerhof, W.E., Anholt, R.J., Eichler, J., Gould, H., Munger, Ch., Alonso, J., Thieberger, P. & Wegner, H.E. (1985). Atomic collisions with relativistic heavy ions. III: Electron capture. Phys. Rev. A 32, 3291.Google Scholar
Meyerhof, W.E., Anholt, R., Xu, X.-Y., Gould, H., Feinberg, B., McDonald, R.J., Wegner, H.E. & Thieberger, P. (1987). Multiple ionization in relativistic heavy-ion–atom collisions. Phys. Rev. A 35, 1967.Google Scholar
Nardi, E. & Zinamon, Z. (1982). Charge state and slowing of fast ions in plasma. Phys. Rev. Lett. 49, 1251.Google Scholar
Nardi, E., Zinamon, Z., Tombrello, T.A. & Tanushev, N. (2002). Simulation of the interaction of high energy C60 cluster ions with amorphous targets. Phys. Rev. A 66, 013201.Google Scholar
Nikolaev, V.S. (1967). Calculation of the effective cross-sections for proton charge exchange in collisions with multi-electron atoms. JETP 24, 847.Google Scholar
Ralchenko, Yu.V. & Maron, Y. (2001). Accelerated recombination due to resonant deexcitation of metastable states. J. Quant. Spectr. Rad Transf. 71, 609.Google Scholar
Richard, P. (1985). Atomic Inner Shell Processes I (Crassman, B., ed.), p. 73. New York: Academic.
Rosmej, O.N., Pikuz, S.A., Korostiy, S., Blazevic, A., Brambrink, E., Fertman, A., Mutin, T., Efremov, V.P., Pikuz, T.A., Faenov, A.Ya., Loboda, P., Golubev, A.A., Hoffmann, D.H.H. (2005). Radiation dynamics of fast heavy ions interacting with matter. Laser Part. Beams 23, 79.Google Scholar
Roth, M., Stöckl, C., Süß, W., Iwase, O., Gericke, D.O., Bock, R., Hoffmann, D.H.H., Geissel, M. & Seelig, W. (2000). Energy loss of heavy ions in laser-produced plasmas. Europhys. Lett. 50, 28.Google Scholar
Roth, M., Brambrink, E,. Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T., &Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95.Google Scholar
Rozet, J.P., Stephan, C. & Vernhet, D. (1996). ETCHA: A program for calculating charge states at GANIL energies. Nucl. Instr. Meth. B 107, 67.Google Scholar
Shevelko, V.P., Tolstikhina, I.Yu. & Stohlker, Th. (2001). Stripping of fast heavy low-charged ions in gaseous targets. Nucl. Instr. Meth. B 184, 295.Google Scholar
Sols, F. & Flores, F. (1989). Inelastic cross-sections and charge states for B, C, N, and O ions moving in metals. Phys. Rev. A 37, 1469.Google Scholar
Stockl, C., Boine-Frankenheim, O., Geißel, M., Roth, M.,Wetzler, H., Seelig, W., Iwase O., Spiller, P., Bock, R., Süß, W. & Hoffmann, D.H.H. (1998). Experiments on the interaction of heavy ions with dense plasma at GSI-Darmstadt. Nucl. Instr. Meth. A 415, 558.Google Scholar
Xu, X.-Y., Montenegro, E.C., Anholt, R., Danzmann, K., Meyerhof, W.E., Schlachter, A.S., Rude, B.S. & McDonald, R.J. (1988). Intermediate-velocity atomic collisions. II. K-shell ionization and excitation in 8.6-MeV/amu Ca ions. Phys. Rev. A 38, 1848.Google Scholar
Zimmerman, G.B. & More, R.M. (1980). Pressure ionization in laser fusion target simulations. J. Quant. Spectr. Rad Transf. 23, 517.Google Scholar