Hostname: page-component-5d59c44645-mhl4m Total loading time: 0 Render date: 2024-02-24T21:26:16.471Z Has data issue: false hasContentIssue false

Approach to the study of fast electron transport in cylindrically imploded targets

Published online by Cambridge University Press:  03 July 2015

D. Del Sorbo
Affiliation:
CEA, CNRS, CELIA (Centre Lasers Intenses et Applications), University Bordeaux, UMR 5107, Talence, France
Y. Arikawa
Affiliation:
ILE, University of Osaka, Osaka, Japan
D. Batani*
Affiliation:
CEA, CNRS, CELIA (Centre Lasers Intenses et Applications), University Bordeaux, UMR 5107, Talence, France
F. Beg
Affiliation:
UCSD, La Jolla, California
J. Breil
Affiliation:
CEA, CNRS, CELIA (Centre Lasers Intenses et Applications), University Bordeaux, UMR 5107, Talence, France
H. Chen
Affiliation:
LLNL, Livermore, California
J.L. Feugeas
Affiliation:
CEA, CNRS, CELIA (Centre Lasers Intenses et Applications), University Bordeaux, UMR 5107, Talence, France
S. Fujioka
Affiliation:
ILE, University of Osaka, Osaka, Japan
S. Hulin
Affiliation:
CEA, CNRS, CELIA (Centre Lasers Intenses et Applications), University Bordeaux, UMR 5107, Talence, France
M. Koga
Affiliation:
ILE, University of Osaka, Osaka, Japan
H. MacLean
Affiliation:
LLNL, Livermore, California
A. Morace
Affiliation:
ILE, University of Osaka, Osaka, Japan
T. Namimoto
Affiliation:
ILE, University of Osaka, Osaka, Japan
W. Nazarov
Affiliation:
St. Andrews University, St. Andrews, United Kingdom
Ph. Nicolai
Affiliation:
CEA, CNRS, CELIA (Centre Lasers Intenses et Applications), University Bordeaux, UMR 5107, Talence, France
H. Nishimura
Affiliation:
ILE, University of Osaka, Osaka, Japan
T. Ozaki
Affiliation:
National Institute for Fusion Science, Japan
T. Sakaki
Affiliation:
CEA, CNRS, CELIA (Centre Lasers Intenses et Applications), University Bordeaux, UMR 5107, Talence, France
J.J. Santos
Affiliation:
CEA, CNRS, CELIA (Centre Lasers Intenses et Applications), University Bordeaux, UMR 5107, Talence, France
Ch. Spindloe
Affiliation:
Rutherford Appleton Laboratory, Didcot, United Kingdom
K.A. Tanaka
Affiliation:
Graduate school of engineering Osaka University, Osaka, Japan
X. Vaisseau
Affiliation:
CEA, CNRS, CELIA (Centre Lasers Intenses et Applications), University Bordeaux, UMR 5107, Talence, France
M. Veltcheva
Affiliation:
CEA, CNRS, CELIA (Centre Lasers Intenses et Applications), University Bordeaux, UMR 5107, Talence, France
T. Yabuchi
Affiliation:
Graduate school of engineering Osaka University, Osaka, Japan
Z. Zhang
Affiliation:
ILE, University of Osaka, Osaka, Japan
*
Address correspondence and reprint request to: D. Batani, CEA, CNRS, CELIA (Centre Lasers Intenses et Applications), University Bordeaux, UMR 5107, F-33405 Talence, France. E-mail: batani@celia.u-bordeaux1.fr

Abstract

The transport of relativistic electron beam in compressed cylindrical targets was studied from a numerical and experimental point of view. In the experiment, cylindrical targets were imploded using the Gekko XII laser facility of the Institute of Laser Engineering. Then the fast electron beam was created by shooting the LFEX laser beam. The penetration of fast electrons was studied by observing Kα emission from tracer layers in the target.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdallah, J., Batani, D., Desai, T., Lucchini, G., Faenov, A., Pikuz, T. & Narayanan, V. (2007). High resolution X-ray emission spectra from picosecond laser irradiated Ge targets. Laser Part. Beams 25, 245252.CrossRefGoogle Scholar
Atzeni, S. & Tabak, M. (2005). Overview of ignition conditions and gain curves for the fast ignitor. Plasma Phys. Control. Fusion 47, B769.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Hora, H., Jablonski, S. & Wolowski, J. (2006). Studies on laser-driven generation of fast high-density plasma blocks for fast ignition. Laser Part. Beams 24, 249254.CrossRefGoogle Scholar
Batani, D. (2002). Transport in dense matter of relativistic electrons produced in ultra-high-intensity laser interactions. Laser Part. Beams 20, 321336.CrossRefGoogle Scholar
Beg, F.N., Bell, A.R., Dangor, A.E., Danson, C.N., Fews, A.P., Glinsky, M.E. & Tatarakis, M. (1997). A study of picosecond laser–solid interactions up to 1019 W cm−2. Phys. Plasmas (1994-Present) 4, 447457.CrossRefGoogle Scholar
Bell, A.R. & Kingham, R.J. (2003). Resistive collimation of electron beams in laser-produced plasmas. Phys. Rev. Lett. 91, 035003.CrossRefGoogle ScholarPubMed
Breil, J., Galera, S. & Maire, P.H. (2011). Multi-material ALE computation in inertial confinement fusion code CHIC. Comput. Fluids 46, 161167.CrossRefGoogle Scholar
Chawla, S., Wei, M.S., Mishra, R., Akli, K.U., Chen, C.D., McLean, H.S. & Beg, F.N. (2013). Effect of target material on fast-electron transport and resistive collimation. Phys. Rev. Lett. 110, 025001.CrossRefGoogle ScholarPubMed
Chen, C.D., King, J.A., Key, M.H., Akli, K.U., Beg, F.N., Chen, H. & Van Woerkom, L.D. (2008). A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimetersa). Rev. Sci. Instrum. 79, 10E305.CrossRefGoogle Scholar
Green, J.S., Ovchinnikov, V.M., Evans, R.G., Akli, K.U., Azechi, H., Beg, F.N. & Norreys, P.A. (2008). Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas. Phys. rev. Lett. 100, 015003.CrossRefGoogle ScholarPubMed
Gu, Y., Yu, J., Zhou, W., Wu, F., Wang, J., Liu, H. & Zhang, B. (2013). Collimation of hot electron beams by external field from magnetic-flux compression. Laser Part. Beams 31, 579582.CrossRefGoogle Scholar
Gus'Kov, S. (2005). Thermonuclear gain and parameters of fast ignition ICF-targets. Laser Part. Beams 23, 255260.CrossRefGoogle Scholar
Hallo, L., Olazabal-Loumé, M., Ribeyre, X., Dréan, V., Schurtz, G., Feugeas, J.L. & Maire, P.H. (2009). Hydrodynamic and symmetry safety factors of HiPER's targets. Plasma Phys. Control. Fusion 51, 014001.CrossRefGoogle Scholar
Legall, H., Stiel, H., Nickles, P.V., Bjeoumikhov, A.A., Langhoff, N., Haschke, M. & Wedell, R. (2005). Applications of highly oriented pyrolytic graphite (HOPG) for x-ray diagnostics and spectroscopy. Optics & Photonics 2005 pp. 591802591802. International Society for Optics and Photonics.Google Scholar
Martinolli, E., Batani, D., Perelli-Cippo, E., Scianitti, F., Koenig, M., Santos, J.J. & Cowan, T.E. (2002). Fast electron transport and heating in solid-density matter. Laser Part. Beams 20, 171175.CrossRefGoogle Scholar
Martinolli, E., Koenig, M., Amiranoff, F., Baton, S.D., Gremillet, L., Santos, J.J. & Batani, D. (2004). Fast electron heating of a solid target in ultrahigh-intensity laser pulse interaction. Phys. Rev. E 70, 055402.CrossRefGoogle ScholarPubMed
Morace, A. & Batani, D. (2010). Spherically bent crystal for X-ray imaging of laser produced plasmas. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 623, 797800.CrossRefGoogle Scholar
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: concepts, problems, and prospectives. Laser Part. Beams 22, 512.CrossRefGoogle Scholar
Nakamura, H., Sentoku, Y., Matsuoka, T., Kondo, K., Nakatsutsumi, M., Norimatsu, T. & Kodama, R. (2008). Fast heating of cylindrically imploded plasmas by Petawatt laser light. Phys. Rev. Lett. 100, 165001.CrossRefGoogle ScholarPubMed
Nicolaï, P., Feugeas, J.L., Regan, C., Olazabal-Loumé, M., Breil, J., Dubroca, B. & Tikhonchuk, V. (2011). Effect of the plasma-generated magnetic field on relativistic electron transport. Phys. Rev. E 84, 016402.CrossRefGoogle ScholarPubMed
Ohira, S., Fujioka, S., Sunahara, A., Johzaki, T., Nagatomo, H., Matsuo, S. & Azechi, H. (2012). X-ray backlight measurement of preformed plasma by kJ-class petawatt LFEX laser. J. Appl. Phys. 112, 063301.CrossRefGoogle Scholar
Pérez, F., Debayle, A., Honrubia, J., Koenig, M., Batani, D., Baton, S.D. & Volpe, L. (2011). Magnetically guided fast electrons in cylindrically compressed matter. Phys. Rev. Lett. 107, 065004.CrossRefGoogle ScholarPubMed
Pérez, F., Koenig, M., Batani, D., Baton, S.D., Beg, F.N., Benedetti, C. & Volpe, L. (2009). Fast-electron transport in cylindrically laser-compressed matter. Plasma Phys. Control. Fusion 51, 124035.CrossRefGoogle Scholar
Robinson, A.P.L., Sherlock, M. & Norreys, P.A. (2008). Artificial collimation of fast-electron beams with two laser pulses. Phys. Rev. Lett. 100, 025002.CrossRefGoogle ScholarPubMed
Santos, J.J., Amiranoff, F., Baton, S.D., Gremillet, L., Koenig, M., Martinolli, E. & Hall, T. (2002). Fast electron transport in ultraintense laser pulse interaction with solid targets by rear-side self-radiation diagnostics. Phys. Rev. Lett. 89, 025001.CrossRefGoogle ScholarPubMed
Stephens, R.B., Snavely, R.A., Aglitskiy, Y., Amiranoff, F., Andersen, C., Batani, D. & Scianitti, F. (2004). K α fluorescence measurement of relativistic electron transport in the context of fast ignition. Phys. Rev. E 69, 066414.CrossRefGoogle ScholarPubMed
Tabak, M., Clark, D.S., Hatchett, S.P., Key, M.H., Lasinski, B.F., Snavely, R.A. & Freeman, R. (2005). Review of progress in fast ignition. Phys. Plasmas (1994-Present) 12, 057305.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers*. Phys. Plasmas (1994-Present) 1, 16261634.CrossRefGoogle Scholar
Touati, M., Feugeas, J.L., Nicolaï, P., Santos, J.J., Gremillet, L. & Tikhonchuk, V.T. (2014). A reduced model for relativistic electron beam transport in solids and dense plasmas. New J. Phys. 16, 073014.CrossRefGoogle Scholar
Vauzour, B., Perez, F., Volpe, L., Lancaster, K., Nicolai, Ph., Batani, D., Baton, S.D., Beg, F.N., Benedetti, C., Brambrink, E., Chawla, S., Dorchies, F., Fourment, C., Galimberti, M., Gizzi, L.A., Heathcote, R., Higginson, D.P., Hulin, S., Jafer, R., Koster, P., Labate, L., MacKinnon, A.J., MacPhee, A.G., Nazarov, W., Pasley, J., Regan, C., Ribeyre, X., Richetta, M., Schurtz, G., Sgattoni, A. & Santos, J.J. (2011). Laser-driven cylindrical compression of targets for fast electron transport study in warm and dense plasmas. Phys. Plasmas 18, 043108.CrossRefGoogle Scholar
Zhou, C.T., Wu, S.Z., Cai, H.B., Chen, M., Cao, L.H., Wang, X.G. & He, X.T. (2010). Hot electron transport and heating in dense plasma core by hollow guiding. Laser Part. Beams: Pulse Power & High Energy Densities 28, 563570.CrossRefGoogle Scholar