Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T21:23:50.253Z Has data issue: false hasContentIssue false

Analytical and numerical investigation of pulse-shape effect on the interaction of an ultrashort, intense, few-cycle laser pulse with a thin plasma layer

Published online by Cambridge University Press:  05 January 2011

Harish Malav
Affiliation:
DST-Project, Vardhaman Mahaveer Open University, Kota, India
K. P. Maheshwari*
Affiliation:
DST-Project, Vardhaman Mahaveer Open University, Kota, India
Y. Choyal
Affiliation:
School of Physics, Devi Ahilya University, Indore, India
*
Address correspondence and reprint requests to: K. P. Maheshwari, DST-Project, Vardhaman Mahaveer Open University, Rawatbhata road, Kota-324010, India. E-mail: k_p_maheshwari@rediffmail.com

Abstract

Dependence of quasistatic Wakefield and high harmonic generation on the pulse-shape of an ultrashort, intense, few-cycle laser in the reflected radiation from a thin dense plasma layer is investigated. The pulse envelopes considered are Gaussian, Lorentzian, and hyperbolic secant having identical full width at half maximum of intensity. The reflected radiation from the strongly driven surface plasma layer embodies a quasistatic Wakefield, which exists after the main pulse is passed over. A phase modulation is also experienced by the laser light upon reflection from plasma surface motion. As a result harmonics of center carrier frequency of the laser-pulse are generated in the reflected signal. Intensity of the laser harmonics and magnitude of the Wakefield in the reflected radiation are found to depend on the pulse-shape, number of cycles, carrier envelope phase difference, plasma density, angle of incidence, and intensity of the incident pulse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baeva, T., Gordienko, S. & Pukhov, A. (2006). Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404–1/046404-11.CrossRefGoogle ScholarPubMed
Bingham, R., Mendonça, J.T. & Shukla, P.K. (2004). Plasma based charged-particle accelerators. Plasma Phys. Contr. Fusion 46, R1R23.CrossRefGoogle Scholar
Brabec, T. & Krausz, F. (1997). Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett. 78, 32823285.CrossRefGoogle Scholar
Brabec, T. & Krausz, F. (2000). Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545591.CrossRefGoogle Scholar
Brügge, D.A. & Pukhov, A. (2007). Propagation of relativistic surface harmonics radiation in free space. Phys. Plasmas 14, 093104–11.CrossRefGoogle Scholar
Bulanov, S.S., Macchi, A., Maksimchuk, A., Matsuoka, T., Nees, J. & Pegoraro, F. (2007). Electromagnetic pulse reflection at self-generated plasma mirrors: laser pulse shaping and high order harmonic generation. Phys. plasmas 14, 093105–093105.10.CrossRefGoogle Scholar
Bulanov, S.V., Esirkepov, T.ZH., Naumova, N.M. & Sokolov, I.V. (2003). Relativistic whistle: high order harmonics induced by the ultra-intense laser pulse propagating inside the fiber. Phys. Rev. E. 67, 016405–10.CrossRefGoogle Scholar
Dromey, B., Kar, S., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kneip, S., Markey, K., Nagel, S.R., Simpson, P.T., Willingale, L., McKenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P.A. & Zepf, M. (2007). Bright multi-KeV harmonic generation from relativistically oscillating plasma surfaces. Phys. Rev. Lett. 99, 0850011–14.CrossRefGoogle ScholarPubMed
Dromey, B., Rykovanov, S.G., Adams, D., Hörlein, R., Nomura, Y., Carroll, D.C., Foster, P.S., Kar, S., Markey, K., McKenna, P., Neely, D., Geissler, M., Tsakiris, G.D. & Zepf, M. (2009). Tunable enhancement of high harmonic emission from laser solid interactions. Phys. Rev. Lett. 102, 225002–4.CrossRefGoogle ScholarPubMed
Foldes, I.B., Kocsis, G., Racz, E., Szatmari, S. & Veres, G. (2003). Generation of high harmonics in laser plasmas. Laser Part. Beams 21, 517521.CrossRefGoogle Scholar
Ganeev, R.A. (2009). Generation of high-order harmonics of high-power lasers in plasmas produced under irradiations of solid target surfaces by a pre-pulse. Phys.-Uspekhi 52, 5577.CrossRefGoogle Scholar
Gupta, M.K., Sharma, R.P. & Mahmoud, S.T. (2007). Generation of plasma wave and third harmonic generation at ultra relativistic laser power. Laser Part. Beams 25, 211218.CrossRefGoogle Scholar
Kieffer, J.C., Matte, J.P., Pépin, H., Chaker, M., Beaudoin, Y., Johnston, T.W., Chien, C.Y., Coe, S., Mourou, G. & Dubau, J. (1992). Electron distribution anisotropy in laser-produced plasmas from x-ray line polarization measurements. Phys. Rev. Lett. 68, 480483.CrossRefGoogle ScholarPubMed
Linde, D.V. (1999). Generation of high order optical harmonics from solid surfaces. Appl. phys. B 68, 315319.CrossRefGoogle Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.M., Burgy, F., Chambaret, J.P., Chemin, J.F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.P., Scheurer, J.N., Walton, B. & Dangor, A.E. (2002). Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Sci. 298, 15961600.CrossRefGoogle ScholarPubMed
Nisoli, M., Sansone, G., Stagira, S., Silvestri, S.D., Vozzi, C., Pascolini, M., Poletto, L., Villoresi, P. & Tondello, G. (2003). Effects of carrier-envelope phase differences of few optical-cycle light pulses in single-shot high- order-harmonic spectra. Phys. Rev. Lett. 91, 2139051–54.CrossRefGoogle ScholarPubMed
Norreys, P.A., Santala, M., Clark, E., Zepf, M., Watts, I., Beg, F.N., Krushelnick, K., Tatarakis, M., Dangor, A.E., Fang, X., Graham, P., McCanny, T., Singhal, R.P., Ledingham, K.W.D., Creswell, A., Sanderson, D.C.W., Magill, J., Machacek, A., Wark, J.S., Allott, R., Kennedy, B. & Neely, D. (1999). Observation of a highly directional γ-ray beam from ultrashort, ultraintense laser pulse interactions with solids. Phys. Plasmas 6, 21502157.CrossRefGoogle Scholar
Nuzzo, S., Zarcone, M., Ferrante, G. & Basile, S. (2000). A simple model of high harmonic generation in a plasma. Laser Part. Beams 18, 483487.CrossRefGoogle Scholar
Quéré, F., Thaury, C., Geindre, J.P., Bonnaud, G., Monot, P. & Martin, Ph. (2008). Phase properties of laser high-order harmonics generated on plasma mirrors. Phys. Rev. Lett. 100, 09500410950044.CrossRefGoogle ScholarPubMed
Quéré, F., Thaury, C., Monot, P., Dobosz, S. & Martin, Ph. (2006). Coherent wake emission of high order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 12500411250044.CrossRefGoogle ScholarPubMed
Sprangle, P. (1987). Analysis of radiation focusing and steering in the free-electron laser by use of a source-dependent expansion technique. Phys. Rev. A 36, 27732781.CrossRefGoogle ScholarPubMed
Varró, S. (2007). Linear and nonlinear absolute phase effects in interactions of ultrashort laser pulses with a metal nano-layer or with a thin plasma layer. Laser Part. Beams 25, 379390.CrossRefGoogle Scholar
Villoresi, P., Barbiero, P., Poletto, L., Nisoli, M., Cerullo, G., Priori, E., Stagira, S., De Lisco, C., Bruzzese, R. & Altucci, C. (2001). Study of few-optical-cycles generation of high-order harmonics. Laser Part. Beams 19, 4145.CrossRefGoogle Scholar
Vshivkov, V.A., Naumova, N.M., Pegoraro, F. & Bulanov, S.V. (1998). Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil. Phys. Plasmas 5, 27272741.CrossRefGoogle Scholar
Zepf, M., Clark, E.L., Beg, F.N., Clarke, R.J., Dangor, A.E., Gopal, A., Krushelnick, K., Norreys, P.A., Tatarakis, M., Wagner, U. & Wei, M.S. (2003). Proton acceleration from high intensity laser interactions with thin foil targets. Phys. Rev. Lett. 90, 064801–4.CrossRefGoogle ScholarPubMed