Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-24T21:24:44.535Z Has data issue: false hasContentIssue false

Climate Change Impacts and Adaptations: New Challenges for the Wine Industry*

Published online by Cambridge University Press:  14 June 2016

Nathalie Ollat*
EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 33140 Villenave d’Ornon, France
Jean-Marc Touzard
INRA, UMR « Innovation », 2 place Viala, 34060 Montpellier, France; e-mail:
Cornelis van Leeuwen
EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 33140 Villenave d’Ornon, France; e-mail:
(corresponding author). e-mail:


Climate change will have a profound effect on vine growing worldwide. Wine quality will also be affected, which will raise economic issues. Possible adaptations may result from changes in plant material, viticultural techniques, and the wine-making process. Relocation of vineyards to cooler areas and increased irrigation are other options, but they may result in potential conflicts for land and water use. Grapes are currently grown in many regions around the world, and growers have adapted their practices to the wide range of climatic conditions that can be found among or inside these areas. This knowledge is precious for identifying potential adaptations to climate change. Because climate change affects all activities linked to wine production (grape growing, wine making, wine economics, and environmental issues), multidisciplinary research is needed to guide growers to continue to produce high-quality wines in an economical and environmentally sustainable way. An example of such an interdisciplinary study is the French LACCAVE (long-term adaptation to climate change in viticulture and enology) project, in which researchers from 23 institutes work together on all issues related to the impact of climate change on wine production. (JEL Classifications: Q1, Q5)

Copyright © American Association of Wine Economists 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



This work was supported by the metaprogramme Adaptation of Agriculture and Forests to Climate Change (AAFCC) of the French National Institute for Agricultural Research (INRA). The authors acknowledge all the participants of the Laccave project for the fruitful scientific exchanges which have contributed to this article.


Ashenfelter, O., and Storchmann, K. (2016). Climate change and wine: A review of the economic implications. Journal of Wine Economics, 11(1), 105138.Google Scholar
Barbeau, G., Goulet, E., Neethling, E., Ollat, N., and Touzard, J.-M. (2014). Les méthodes d'adaptation au changement climatique. In Quénol, H. (Ed.). Changement climatique et terroirs viticoles. Paris: Tec & Doc, Lavoisier. Chapter 15.Google Scholar
Belleti, A., Marescotti, A., and Touzard, J.-M. (2015). Geographical indications, public goods, and sustainable development: The roles of actors’ strategies and public policies. World Development, doi:10.1016/j.worlddev.2015.05.004.Google Scholar
Bindi, M., Fibbi, L., Gozzini, B., Orlandini, S., and Miglietta, F. (1996). Modelling the impact of future climate scenarios on yield and yield variability of grapevine. Climate Research, 7(3), 213224.Google Scholar
Bois, B., Wald, L., Pieri, P., Van Leeuwen, C., Commagnac, L., Chery, P., Christen, M., Gaudillère, J.-P., and Saur, E. (2008). Estimating spatial and temporal variations in solar radiation within Bordeaux winegrowing region using remotely sensed data. Journal International des Sciences de la Vigne et du Vin, 42(1), 1525.Google Scholar
Coombe, B.G. (1987). Influence of temperature on composition and quality of grapes. Acta Horticulturae, 206, 2336.Google Scholar
Coupel-Ledru, A., Lebon, É., Christophe, A., Doligez, A., Cabrera-Bosquet, L., Péchier, P., Hamard, P., This, P., and Simonneau, T. (2014). Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache × Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. Journal of Experimental Botany, 65(21), 62056218.CrossRefGoogle Scholar
Delay, E., Piou, C., and Quénol, H. (2015). The mountain environment, a driver for adaptation to climate change. Land Use Policy, 48, 5162.CrossRefGoogle Scholar
Duchêne, E., and Schneider, C. (2005). Grapevine and climatic changes: A glance at the situation in Alsace. Agronomy for Sustainable Development, 25, 9399.CrossRefGoogle Scholar
Ferrise, R., Trombi, G., Moriondo, M., and Bindi, M. (2016). Climate change and grapevines: A simulation study for the Mediterranean basin. Journal of Wine Economics, 11(1), 88104.Google Scholar
Fuentes Espinoza, A., Giraud-Héraud, E., Pérès, S., Pons, A., Tempère, S., and Darriet, P. (2014). Are today's consumers ready to buy the wines of tomorrow? Paper presented at XXI Enometrics Conference, Lyon, France.Google Scholar
Gambetta, G.A. (2016). Water stress and grape physiology in the context of global climate change. Journal of Wine Economics, 11(1), 168180.Google Scholar
Giannakopoulos, C., Le Sager, P., Bindi, M., Moriondo, M., Kostopoulou, E., and Goodess, C.M. (2009). Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Global and Planetary Change, 68(3), 209224.CrossRefGoogle Scholar
Giraud-Héraud, E., and Pichery, M.-C. (2013). Wine Economics: Quantitative Studies and Empirical Applications. Basingstoke, Hampshire, UK: Palgrave Macmillan.Google Scholar
Gladstones, J. (1992). Viticulture and Environment. Adelaide, South Australia, Australia: WineTitles.Google Scholar
Hallegatte, S., Lecocq, F., and de Perthuis, C. (2011). Designing climate change adaptation policies: An economic framework. Policy Research Working Paper 5568. Washington, DC: World Bank.Google Scholar
Hannah, L., Roehrdanz, P.R., Ikegami, M., Shepard, A.V., Shaw, M.R., Tabor, G., Zhi, L., Marquet, P.A., and Hijmans, R.J. (2013). Climate change, wine, and conservation. Proceedings of the National Academy of Sciences of the United States of America, 110(17), 69076912.Google Scholar
Intergovernmental Panel on Climate Change (IPCC). (2013). Summary for policymakers. In Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 329.Google Scholar
Jackson, D.I., and Lombard, P.B. (1993). Environmental and management practices affecting grape composition and wine quality – a review. American Journal of Enology and Viticulture, 44(4), 409430.Google Scholar
Jones, G.V., and Storchmann, K.-H. (2001). Wine market prices and investment under uncertainty: An econometric model for Bordeaux Crus Classés. Agricultural Economics, 26(2), 115133.Google Scholar
Malheiro, A.C., Santos, J.A., Fraga, H., and Pinto, J.G. (2010). Climate change scenarios applied to viticultural zoning in Europe. Climate Research, 43, 163177.Google Scholar
Marguerit, E., Brendel, O., Lebon, E., Van Leeuwen, C., and Ollat, N. (2012). Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytologist, 194(2), 416429.Google Scholar
Martínez-Lüscher, J., Morales, F., Sánchez-Díaz, M., Delrot, S., Aguirreolea, J., Gomès, E., and Pascual, I. (2015). Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates. Plant Science 236, 168176.Google Scholar
Mira de Orduña, R. (2010). Climate change associated effects on grape and wine quality and production. Food Research International, 43(7), 18441855.Google Scholar
Mori, K., Goto-Yamamoto, N., Kitayama, M., and Hashizume, K. (2007). Loss of anthocyanins in red-wine grape under high temperature. Journal of Experimental Botany, 58(8), 19351945.Google Scholar
Moriondo, M., Giannakopoulos, C., and Bindi, M. (2011). Climate change impact assessment: The role of climate extremes in crop yield simulation. Climatic Change, 104(3), 679701.CrossRefGoogle Scholar
Oczkowski, E. (2016). The effect of weather on wine quality and prices: An Australian spatial analysis. Journal of Wine Economic, 11(1), 4865.Google Scholar
Ollat, N., and Touzard, J.-M. (2014). Long-term adaptation to climate change in viticulture and enology: The LACCAVE project. Spécial Laccave, Journal International des Sciences de la Vigne et du Vin, 2014, 17.Google Scholar
Parker, A., Garcia de Cortázar-Atauri, I., Chuine, I., Barbeau, G., Bois, B., Boursiquot, J.-M., Cahurel, J.-Y., et al. 2013. Classification of varieties for their timing of flowering and veraison using a modelling approach: A case study for the grapevine species Vitis vinifera L. Agricultural and Forest Meteorology, 180, 249264.CrossRefGoogle Scholar
Parker, A.K., Garcia de Cortázar-Atauri, I., Van Leeuwen, C., and Chuine, I. (2011). General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Australian Journal of Grape and Wine Research, 17(2), 206216.CrossRefGoogle Scholar
Parker, A.K., Hofmann, R.W., van Leeuwen, C., McLachlan, A.R.G., and Trought, M.C.T. (2014). Leaf area to fruit mass ratio determines the time of veraison in Sauvignon Blanc and Pinot Noir grapevines. Australian Journal of Grape and Wine Research, 20(3), 422431.CrossRefGoogle Scholar
Pieri, P. (2010). Changement climatique et culture de la vigne: l'essentiel des impacts. In Brisson, N., and Levrault, F. (Eds.), Livre Vert du projet CLIMATOR (2007–2010): Changement Climatique, Agriculture et Forêt en France: Simulations d'Impacts sur les Principales Espèces. Angers, France: Ademe Editions, 213223.Google Scholar
Pieri, P., and Lebon, E. (2014). Modelling the future impacts of climate change on French vineyards. Spécial Laccave, Journal International des Sciences de la Vigne et du Vin, 2014, 3543.Google Scholar
Quénol, H. (2014). Changement Climatique et Terroirs Viticoles. Paris: Tec & Doc, Lavoisier.Google Scholar
Quénol, H., and Bonnardot, V. (2014). A multi-scale climatic analysis of viticultural terroirs in the context of climate change: The “TERADCLIM” project. Spécial Laccave, Journal International des Sciences de la Vigne et du Vin, 2014, 2534.Google Scholar
Roehrdanz, P.R., and Hannah, L. (2016). Climate change, California wine, and wildlife habitat. Journal of Wine Economics, 11(1), 6987.Google Scholar
Sadras, V.O., and Moran, M.A. (2012). Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Australian Journal of Grape and Wine Research, 18(2), 115122.CrossRefGoogle Scholar
Sadras, V.O., Petrie, P.R., and Moran, M.A. (2013). Effects of elevated temperature in grapevine. II juice pH, titratable acidity and wine sensory attributes. Australian Journal of Grape and Wine Research, 19, 107115.Google Scholar
Schultz, H.R. (2000). Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Australian Journal of Grape and Wine Research, 6(1), 212.Google Scholar
Schultz, H.R. (2016). Global climate change, sustainability, and some challenges for grape and wine production. Journal of Wine Economics, 11(1), 181200.CrossRefGoogle Scholar
Schultz, H.R., and Stoll, M. (2010). Some critical issues in environmental physiology of grapevines: Future challenges and current limitations. Australian Journal of Grape and Wine Research, 16(s1), 424.Google Scholar
Spayd, S.E., Tarara, J.M., Mee, D.L., and Ferguson, J.C. (2002). Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. American Journal of Enology and Viticulture, 53(3), 171182.Google Scholar
Tilloy, V., Ortiz-Julien, A., and Dequin, S. (2014). Reducing ethanol and improving glycerol yield by adaptive evolution of Saccharomyces cerevisiae wine yeast under hyperosmotic conditions. Applied and Environmental Microbiology, doi:10.1128/AEM.03710-13.Google Scholar
Tonietto, J., Sotes Ruiz, V., Zanus, M.C., Montes, C., Uliarte, E.M., Bruno, L.A., Climaco, P., et al. (2014). The effect of viticultural climate on red and white wine typicity. Characterisation at the level of Ibero-American grape-growing regions. Spécial Laccave, Journal International des Sciences de la Vigne et du Vin, 2014, 1923.Google Scholar
van Leeuwen, C., and Darriet, P. (2016). Impact of climate change on viticulture and wine quality. Journal of Wine Economics, 11(1), 150167.Google Scholar
van Leeuwen, C., Friant, P., Choné, X., Tregoat, O., Koundouras, S., and Dubourdieu, D. (2004). Influence of climate, soil, and cultivar on terroir. American Journal of Enology and Viticulture, 55(3), 207217.Google Scholar
van Leeuwen, C., Parker, A., Destrac, A., de Resseguier, L., Garcia de Cortazar-Atauri, I., and Chuine, I. (2013). La modélisation de la phénologie comme outil pour choisir le matériel végétal dans un climat changeant. In 11ème Journée Technique du CIVB, Bordeaux, 100109.Google Scholar
van Leeuwen, C., Schultz, H.R., Garcia de Cortazar-Atauri, I., Duchêne, E., Ollat, N., Pieri, P., Bois, B., et al. (2013). Why climate change will not dramatically decrease viticultural suitability in main wine-producing areas by 2050. Proceedings of the National Academy of Sciences of the United States of America, 110(33), E3051E3052.Google Scholar
van Leeuwen, C., and Seguin, G. (2006). The concept of terroir in viticulture. Journal of Wine Research, 17(1), 110.Google Scholar
van Leeuwen, C., Tregoat, O., Choné, X., Bois, B., Pernet, D., and Gaudillère, J.-P. (2009). Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? Journal International des Sciences de la Vigne et du Vin, 43(3), 121134.Google Scholar
Viguié, V., Lecocq, F., and Touzard, J.-M. (2014). Viticulture and adaptation to climate change. Spécial Laccave, Journal International des Sciences de la Vigne et du Vin, 2014, 5560.Google Scholar
Zamora, F. (2014). Adapting red winemaking to climate change conditions. Spécial Laccave, Journal International des Sciences de la Vigne et du Vin, 2014, 7176.Google Scholar