Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T13:04:19.512Z Has data issue: false hasContentIssue false

Towards integrated ecological research in tropical montane cloud forests

Published online by Cambridge University Press:  13 September 2016

Patrick H. Martin*
Affiliation:
Department of Horticulture and Landscape Architecture and the Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
Peter J. Bellingham
Affiliation:
Landcare Research, P.O. Box 69040, Lincoln 7640, New Zealand
*
1Corresponding author. Email: patrick.martin@colostate.edu

Abstract:

Tropical tropical montane cloud forests (TMCFs) cover a small portion of the Earth, yet they are significant biodiversity hotspots and centres of endemism, and they provide important hydrological and biogeochemical functions that affect human livelihoods. Given their fundamental sensitivity to climate, TMCFs also serve as an early warning system for climate change impacts. This paper outlines a new international initiative, CloudNet, that aims to promote integrated research across TMCFs, and introduces a special issue that reviews emerging themes and topics in the ecology of TMCFs, highlighting knowledge gaps and suggesting new directions for research. CloudNet is helping coordinate several new research projects and protocols: (1) a global repository of TMCF data and meta-analyses across multiple sites; (2) a multi-site study of plant functional traits across TMCFs; (3) a multi-site study of decomposition processes across TMCFs; (4) a protocol for standardizing climate data collection across TMCFs. These studies are intended to evaluate the extent to which general patterns emerge, accounting for biogeographic, phylogenetic and environmental differences among sites. Common data collection across TMCFs should also allow better integration across disciplines, such as linking nutrient limitation, seed production and propagule recruitment, and enable cross-site comparisons of how TMCFs respond to drivers of global change, including rising cloud bases, increasing temperatures, altered disturbance regimes, biological invasions and extinction, and changing human land use.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ABE, T., TACHIKI, Y., KON, H., NAGASAKA, A., ONODERA, K., MINAMINO, K., HAN, Q. & SATAKE, A. 2016. Parameterisation and validation of a resource budget model for masting using spatiotemporal flowering data of individual trees. Ecology Letters 19:11291139.Google Scholar
AIDE, T. M., CLARK, M. L., GRAU, H. R., LÓPEZ-CARR, D., LEVY, M. A., REDO, D., BONILLA-MOHENO, M., RINER, G., ANDRADE-NÚÑEZ, M. J. & MUÑIZ, M. 2013. Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45:262271.CrossRefGoogle Scholar
ARMENTERAS, D., GAST, F. & VILLAREAL, H. 2003. Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biological Conservation 113:245256.Google Scholar
ASBJORNSEN, H. & WICKEL, B. 2009. Changing fire regimes in tropical montane cloud forests: a global synthesis. Pp. 607626 in Cochrane, M. A. (ed.). Tropical fire ecology: climate change, land use, and ecosystem dynamics. Springer Praxis, Berlin.CrossRefGoogle Scholar
ASHTON, P. S. 2003. Floristic zonation of tree communities on wet tropical mountains revisited. Perspectives in Plant Ecology, Evolution and Systematics 6:87104.CrossRefGoogle Scholar
BARLOW, J., LENNOX, G. D., FERREIRA, J., BERENGUER, E., LEES, A. C., MAC NALLY, R., THOMSON, J. R., DE BARROS FERRAZ, S. F., LOUZADA, J., OLIVEIRA, V. H. F., PARRY, L., SOLAR, R. R., VIEIRA, I. C. G., ARAGÃO, L. E. O. C., BEGOTTI, R. A., BRAGA, R. F., CARDOSO, T. M., DE OLIVEIRA, R. C., SOUZA, C. M., MOURA, N. G., NUNES, S. S., SIQUEIRA, J. V., PARDINI, R., SILVEIRA, J. M., VAZ-DE-MELLO, F. Z., VEIGA, R. C. S., VENTURIERI, A. & GARDNER, T. A. 2016. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535:144147.CrossRefGoogle ScholarPubMed
BELLINGHAM, P. J., TANNER, E. V. J. & HEALEY, J. R. 2005. Hurricane disturbance accelerates invasion by the alien tree Pittosporum undulatum in Jamaican montane rain forests. Journal of Vegetation Science 16:675684.CrossRefGoogle Scholar
BINGGELI, P. & HAMILTON, A. C. 1993. Biological invasion by Maesopsis eminii in the East Usambara forests, Tanzania. Opera Botanica 121:229235.Google Scholar
BRUIJNZEEL, L. A. & PROCTOR, J. 1995. Hydrology and biogeochemistry of tropical montane cloud forests: what do we really know? Pp. 3878 in Hamilton, L. S., Juvik, J. O. & Scatena, F. N. (eds.). Tropical montane cloud forests. Springer-Verlag, New York.CrossRefGoogle Scholar
BRUIJNZEEL, L. A., WATERLOO, M. J., PROCTOR, J., KUITERS, A. T. & KOTTERINK, B. 1993. Hydrological observations in montane rain forests on Gunung Silam, Sabah, Malaysia, with special reference to the Massenerhebung effect. Journal of Ecology 81:145167.Google Scholar
BRUIJNZEEL, L. A., KAPPELLE, M., MULLIGAN, M. & SCATENA, F. N. 2011a. Tropical montane cloud forests: state of knowledge and sustainability perspectives in a changing world. Pp. 691740 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge.Google Scholar
BRUIJNZEEL, L. A., SCATENA, F. N. & HAMILTON, L. S. (eds). 2011b. Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge. 768 pp.Google Scholar
BUBB, P., MAY, I., MILES, L. & SAYER, J. 2004. Cloud forest agenda. UNEP–WCMC, Cambridge. 36 pp.Google Scholar
BUSH, M. B., HANSELMAN, J. A. & GOSLING, W. D. 2010. Nonlinear climate change and Andean feedbacks: an imminent turning point? Global Change Biology 16:32233232.Google Scholar
CAYUELA, L., BENAYAS, J. M. R. & ECHEVERRIA, C. 2006. Clearance and fragmentation of tropical montane forests in the Highlands of Chiapas, Mexico (1975–2000). Forest Ecology and Management 226:208218.Google Scholar
CHAI, S.-L. & TANNER, E. V. J. 2011. 150-year legacy of land use on tree species composition in old-secondary forests of Jamaica. Journal of Ecology 99:113121.Google Scholar
CHAZDON, R. L. 2014. Second growth. Chicago University Press, Chicago. 472 pp.CrossRefGoogle Scholar
CHAPMAN, H., CORDEIRO, N. J., DUTTON, P., WENNY, D., KITAMURA, S., KAPLIN, B., MELO, F. P. L. & LAWES, M. J. 2016. Seed dispersal ecology of tropical montane forests. Journal of Tropical Ecology DOI: http://dx.doi.org/10.1017/S0266467416000389.Google Scholar
CRAUSBAY, S. & MARTIN, P. H. 2016. Natural disturbance, vegetation patterns and ecological dynamics in tropical montane forests. Journal of Tropical Ecology. doi: http://dx.doi.org/10.1017/S0266467416000328.Google Scholar
CRAUSBAY, S. D., MARTIN, P. H. & KELLY, E. F. 2015. Tropical montane vegetation dynamics near the upper cloud belt strongly associated with a shifting ITCZ and fire. Journal of Ecology 103:891903.CrossRefGoogle Scholar
CRIST, T. O., VEECH, J. A., GERING, J. C. & SUMMERVILLE, K. S. 2003. Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. American Naturalist 162:734743.CrossRefGoogle ScholarPubMed
DALLING, J. W., HEINEMAN, K., GONZÁLEZ, G. & OSTERTAG, R. 2016. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests. Journal of Tropical Ecology. doi: http://dx.doi.org/10.1017/S0266467415000619.Google Scholar
DARBY, A., DRAGULJIĆ, D., GLUNK, A. & GOTSCH, S. G. 2016. Habitat moisture is an important driver of patterns of sap flow and water balance in tropical montane cloud forest epiphytes. Oecologia. doi:10.1007/s00442-016-3659-5.CrossRefGoogle ScholarPubMed
DENSLOW, J. S. 2003. Weeds in paradise: thoughts on the invasibility of tropical islands. Annals of the Missouri Botanical Garden 90:119127.Google Scholar
DUQUE, A., STEVENSON, P. R. & FEELEY, K. J. 2015. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proceedings of the National Academy of Sciences USA 112:1074410749.Google Scholar
FAHEY, T. J., SHERMAN, R. E. & TANNER, E. V. J. 2016. Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. Journal of Tropical Ecology. doi: http://dx.doi.org/10.1017/S0266467415000176.Google Scholar
FAO. 1993. Forest Resources Assessment 1990 – Tropical countries. FAO Forestry Paper No. 112, Rome.Google Scholar
FIELD, C. B., BARROS, V. R., DOKKEN, D. J., MACH, K. J., MASTRANDA, M. D. & BILIR, T. E. (eds.). 2014. IPCC 2014: Climate Change 2014: Impacts, Adaptation and Vulnerability: Part B: Regional Aspects. Working Group II Contribution to the IPCC Fifth Assessment Report. Cambridge, Cambridge University Press. 670 pp.Google Scholar
FOSTER, P. 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55:73106.Google Scholar
GATES, D. M. 1969. The ecology of an elfin forest in Puerto Rico 4. Transpiration rates and temperatures of leaves in cool humid environment. Journal of the Arnold Arboretum 50:9398.CrossRefGoogle Scholar
GENTRY, A. H. 1995. Patterns of diversity and floristic composition in neotropical montane forests. Pp. 103126 in Churchill, S. P., Balslev, H., Forero, E. & Luteyn, J. L. (eds.). Biodiversity and conservation of neotropical montane forests. The New York Botanical Garden, New York.Google Scholar
GERING, J. C., CRIST, T. O. & VEECH, J. A. 2003. Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity. Conservation Biology 17:488499.CrossRefGoogle Scholar
GIAMBELLUCA, T. W. & NULLET, D. 1991. Influence of the trade-wind inversion on the climate of a leeward mountain slope in Hawaiʻi. Climate Research 1:207216.Google Scholar
GOTSCH, S. G., NADKARNI, N., DARBY, A., GLUNK, A., DIX, M., DAVIDSON, K. & DAWSON, T. E. 2015. Life in the treetops: ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. Ecological Monographs 85:393412.Google Scholar
GOTSCH, S. G., ASBJORNSEN, H. & GOLDSMITH, G. R. 2016a. Plant carbon and water fluxes in tropical montane cloud forests. Journal of Tropical Ecology. doi: http://dx.doi.org/10.1017/S0266467416000341.CrossRefGoogle Scholar
GOTSCH, S. G., NADKARNI, N. & AMICI, A. 2016b. The functional roles of epiphytes and arboreal soils in tropical montane cloud forests. Journal of Tropical Ecology. doi: http://dx.doi.org/10.1017/S026646741600033X.CrossRefGoogle Scholar
GRUBB, P. J. 1971. Interpretation of the ‘Massenerhebung’ effect on tropical mountains. Nature 229:4445.CrossRefGoogle ScholarPubMed
GRUBB, P. J. 1977. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8:83107.CrossRefGoogle Scholar
HAMILTON, L. S., JUVIK, J. O. & SCATENA, F. N. (eds.). 1995. Tropical montane cloud forests. Springer-Verlag, New York. 410 pp.CrossRefGoogle Scholar
HANSEN, M. C., POTAPOV, P. V., MOORE, R., HANCHER, M., TURUBANOVA, S. A., TYUKAVINA, A., THAU, D., STEHMAN, S. V., GOETZ, S. J., LOVELAND, T. R., KOMMAREDDY, A., EGOROV, A., CHINI, L., JUSTICE, C. O. & TOWNSHEND, J. R. G. 2013. High-resolution global maps of 21st-century forest cover change. Science 342:850853.Google Scholar
HU, J. & RIVEROS-IREGUI, D. A. 2016. Life in the clouds: are tropical montane cloud forests responding to changes in climate? Oecologia 180:10611073.Google Scholar
IVORY, S. J., EARLY, R., SAX, D. F. & RUSSELL, J. 2016. Niche expansion and temperature sensitivity of tropical African montane forests. Global Ecology and Biogeography 25:693703.Google Scholar
KAPOS, V. & TANNER, E. V. J. 1985. Water relations of Jamaican upper montane rain forest trees. Ecology 66:241250.Google Scholar
KIER, G. & BARTHLOTT, W. 2001. Measuring and mapping endemism and species richness: a new methodological approach and its application on the flora of Africa. Biodiversity and Conservation 10:15131529.Google Scholar
KLUGE, J. & KESSLER, M. 2006. Fern endemism and its correlates: contribution from an elevational transect in Costa Rica. Diversity and Distributions 12:535545.Google Scholar
LA SORTE, F. A. & JETZ, W. 2010. Projected range contractions of montane biodiversity under global warming. Proceedings of the Royal Society B–Biological Sciences 277:34013410.Google Scholar
LA TORRE-CUADROS, M. D. L. Á., HERRANDO-PÉREZ, S. & YOUNG, K. R. 2007. Diversity and structural patterns for tropical montane and premontane forests of central Peru, with an assessment of the use of higher-taxon surrogacy. Biodiversity and Conservation 16:29652988.Google Scholar
LAURANCE, W. F., CAMARGO, J. L. C., LUIZAO, R. C. C., LAURANCE, S. G., PIMM, S. L., BRUNA, E. M., STOUFFER, P. C., WILLIAMSON, G. B., BENITEZ-MALVIDO, J., VASCONCELOS, H. L., VAN HOUTAN, K. S., ZARTMAN, C. E., BOYLE, S. A., DIDHAM, R. K., ANDRADE, A. & LOVEJOY, T. E. 2011. The fate of Amazonian forest fragments: a 32-year investigation. Biological Conservation 144:5667.Google Scholar
LAWTON, R. O., NAIR, U. S., PIELKE, R. A. & WELCH, R. M. 2001. Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294:584587.Google Scholar
LOMOLINO, M. V. 2001. Elevation gradients of species-density: historical and prospective views. Global Ecology and Biogeography 10:313.Google Scholar
LOOPE, L. L. & GIAMBELLUCA, T. W. 1998. Vulnerability of island tropical montane cloud forests to climate change, with special reference to East Maui, Hawai'i. Climate Change 39:503517.CrossRefGoogle Scholar
MAISELS, F., KEMING, E., KEMEI, M. & TOH, C. 2001. The extirpation of large mammals and implications for montane forest conservation: the case of the Kilum-Ijim Forest, North-west Province, Cameroon. Oryx 35:322331.CrossRefGoogle Scholar
MALCOLM, J. R., LIU, C., NEILSON, R. P., HANSEN, L. & HANNAH, L. 2006. Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology 20:538548.CrossRefGoogle ScholarPubMed
MARTIN, P. H. & FAHEY, T. J. 2006. Fire history along environmental gradients in the subtropical pine forests of the Cordillera Central, Dominican Republic. Journal of Tropical Ecology 22:114.CrossRefGoogle Scholar
MARTIN, P. H. & FAHEY, T. J. 2014. Mesoclimatic patterns shape the striking vegetation mosaic in the Cordillera Central, Dominican Republic. Arctic, Antarctic, and Alpine Research 46:755765.Google Scholar
MARTIN, P. H., SHERMAN, R. E. & FAHEY, T. J. 2004. Forty years of tropical forest recovery from agriculture: structure and floristics of secondary and old growth riparian forests in the Dominican Republic. Biotropica 36:297317.Google Scholar
MARTIN, P. H., SHERMAN, R. E. & FAHEY, T. J. 2007. Tropical montane forest ecotones: climate gradients, natural disturbance, and vegetation zonation in the Cordillera Central, Dominican Republic. Journal of Biogeography 34:17921806.CrossRefGoogle Scholar
MARTIN, P. H., FAHEY, T. J. & SHERMAN, R. E. 2011. Vegetation zonation in a neotropical montane forest: environment, disturbance and ecotones. Biotropica 43:533543.CrossRefGoogle Scholar
MEYER, J.-Y. 1996. Status of Miconia calvescens (Melastomataceae), a dominant invasive tree in the Society Islands (French Polynesia). Pacific Science 50:6676.Google Scholar
MULLIGAN, M. 2011a. Modeling the tropics-wide extent and distribution of cloud forest and cloud forest loss, with implications for conservation priority. Pp. 1438 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge.Google Scholar
MULLIGAN, M., JARVIS, A., GONZÁLEZ, J. & BRUIJNZEEL, L. A. 2011b. Using “biosensors” to elucidate rates and mechanisms of cloud water interception by epiphytes, leaves, and branches in a sheltered Colombian cloud forest. Pp. 249260 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
MYERS, N., MITTERMEIER, R. A., MITTERMEIER, C. G., DA FONSECA, G. A. B. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853858.Google Scholar
NADKARNI, N. M., SCHAEFER, D. A., MATELSON, T. J. & SOLANO, R. 2004. Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. Forest Ecology and Management 198:223236.Google Scholar
NAIR, U. S., ASEFI, S., WELCH, R. M., RAY, D. K., LAWTON, R. O., MANOHARAN, V. S., MULLIGAN, M., SEVER, T. L., IRWIN, D. & POUNDS, A. 2008. Biogeography of tropical montane rain forests II: mapping of orographic cloud immersion. Journal of Applied Meteorology and Climatology 47:21832197.Google Scholar
OHSAWA, M. 1990. An interpretation of latitudinal patterns of forest limits in south and east Asian mountains. Journal of Ecology 78:326339.Google Scholar
OHSAWA, M. 1995. The montane cloud forest and its gradational changes in Southeast Asia. Pp. 254265 in Hamilton, L. S., Juvik, J. O. & Scatena, F. N. (eds.). Tropical montane cloud forests. Springer-Verlag, New York.CrossRefGoogle Scholar
PEH, K. S. H., SOH, M. C., SODHI, N. S., LAURANCE, W. F., ONG, D. J. & CLEMENTS, R. 2011. Up in the clouds: is sustainable use of tropical montane cloud forests possible in Malaysia? Bioscience 61:2738.Google Scholar
PÉREZ-HARGUINDEGUY, N., DÍAZ, S., GARNIER, E., LAVOREL, S., POORTER, H., JAUREGUIBERRY, P., BRET-HARTE, M. S., CORNWELL, W. K., CRAINE, J. M., GURVICH, D. E., URCELAY, C., VENEKLAAS, E. J., REICH, P. B., POORTER, L., WRIGHT, I. J., RAY, P., ENRICO, L., PAUSAS, J. G., DE VOS, A. C., BUCHMANN, N., FUNES, G., QUÉTIER, F., HODGSON, J. G., THOMPSON, K., MORGAN, H. D., TER STEEGE, H., VAN DER HEIJDEN, M. G. A., SACK, L., BLONDER, B., POSCHLOD, P., VAIERETTI, M. V., CONTI, G., STAVER, A. C., AQUINO, S. & CORNELISSEN, J. H. C. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61:167234.Google Scholar
POUNDS, J. A., FOGDEN, M. P. L. & CAMPBELL, J. H. 1999. Biological response to climate change on a tropical mountain. Nature 398:611615.CrossRefGoogle Scholar
POWERS, J. S., MONTGOMERY, R. A., ADAIR, E. C., BREARLEY, F. Q., DEWALT, S. J., CASTANHO, C. T., CHAVE, J., DEINERT, E., GANZHORN, J. U., GILBERT, M. E., GONZÁLEZ-ITURBE, J. A., BUNYAVEJCHEWIN, S., GRAU, H. R., HARMS, K. E., HIREMATH, A., IRIARTE-VIVAR, S., MANZANE, E., DE OLIVEIRA, A. A., POORTER, L., RAMANAMANJATO, J.-B., SALK, C., VARELA, A., WEIBLEN, G. D. & LERDAU, M.T. 2009. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology 97:801811.Google Scholar
PRESLEY, S. J. & WILLIG, M. R. 2009. Bat metacommunity structure on Caribbean islands and the role of endemics. Global Ecology and Biogeography 19:185199.Google Scholar
PRESLEY, S. J., HIGGINS, C. L. & WILLIG, M. R. 2011. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119:908917.Google Scholar
REHM, E. M. & FEELEY, K. J. 2015. The inability of tropical cloud forest species to invade grasslands above treeline during climate change: potential explanations and consequences. Ecography 38:11671175.Google Scholar
ROWE, R. J. & LIDGARD, S. 2008. Elevational gradients and species richness: do methods change pattern perception. Global Ecology and Biogeography 18:163177.Google Scholar
SAFONT, E., RULL, V., VEGAS-VILARRÚBIA, T., HOLST, B. K., HUBER, O., NOZAWA, S., VIVAS, Y. & SILVA, A. 2014. Establishing a baseline of plant diversity and endemism on a neotropical mountain summit for future comparative studies assessing upward migration: an approach from biogeography and nature conservation. Systematics and Biodiversity 12:292314.CrossRefGoogle Scholar
SCHUUR, E. A. G. & MATSON, P. A. 2001. Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431442.Google Scholar
SCHUUR, E. A. G., CHADWICK, O. A. & MATSON, P. A. 2001. Carbon cycling and soil carbon storage in mesic to wet Hawaiian montane forests. Ecology 82:31823196.Google Scholar
SHIELS, A. B. 2011. Frugivory by introduced black rats (Rattus rattus) promotes dispersal of invasive plant seeds. Biological Invasions 13:781792.CrossRefGoogle Scholar
SHREVE, F. 1914. A montane rain-forest: a contribution to the physiological plant geography of Jamaica. Carnegie Institute of Washington, Washington, DC. 176 pp.Google Scholar
SOBEL, A. H., CAMARGO, S. J., HALL, T. M., LEE, C.-Y., TIPPETT, M. K. & WING, A. A. 2016. Human influence on tropical cyclone intensity. Science 353:242246.CrossRefGoogle ScholarPubMed
SPRACKLEN, D. V. & RIGHELATO, R. 2014. Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11:27412754.Google Scholar
STOCKER, T. F., QIN, D., PLATTNER, G.-K., TIGNOR, M., ALLEN, S. K., BOSCHUNG, J., NAUELS, A., XIA, Y., BEX, V. & MIDGLEY, P. M. (eds.). 2013. IPCC 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. 1535 pp.Google Scholar
STRECKER, M. R., ALONSO, R. N., BOOKHAGEN, B., CARRAPA, B., HILLEY, G. E., SOBEL, E. R. & TRAUTH, M. H. 2007. Tectonics and climate of the Southern Central Andes. Annual Review of Earth and Planetary Sciences 35:747787.Google Scholar
SUGDEN, A. M. 1981. Aspects of the ecology of vascular epiphytes in two Colombian cloud forests. II. Habitat preferences of Bromeliaceae in the Serrania de Macuira. Selbyana 5:264273.Google Scholar
SUGDEN, A. M. 1982. Long-distance dispersal, isolation, and the cloud forest flora of the Serrania de Macuira, Guajira, Colombia. Biotropica 14:208219.CrossRefGoogle Scholar
SUNDQVIST, M. K., SANDERS, N. J. & WARDLE, D. A. 2013. Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics 44:261280.Google Scholar
TABARELLI, M., MANTOVANI, W. & PERES, C.A. 1999. Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biological Conservation 91:119127.Google Scholar
TANNER, E.V. J., VITOUSEK, P. M. & CUEVAS, E. 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:1022.Google Scholar
TROLL, C. 1968. The cordilleras of the tropical Americas: aspects of climatic, phytogeographical and agrarian ecology. Pp. 1555 in Troll, C. (ed.). Geo-ecology of the mountainous region of the tropical Americas. Colloquium Geographicum, Bonn.Google Scholar
WELCH, R. M., ASEFI, S., ZENG, J., NAIR, U. S., HAN, Q., LAWTON, R. O., RAY, D. K. & MANOHARAN, V. S. 2008. Biogeography of tropical montane cloud forests I: remote-sensing of cloud base heights. Journal of Applied Meteorology and Climatology 47:960975.Google Scholar
WERNER, F. A. & HOMEIER, J. 2015. Is tropical montane forest heterogeneity promoted by a resource-driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Functional Ecology 29:430440.Google Scholar
WILLIAMS-LINERA, G., SOSA, V. & PLATAS, T. 1995. The fate of epiphytic orchids after fragmentation of a Mexican cloud forest. Selbyana 16:3640.Google Scholar
WILLIG, M. R & PRESLEY, S. J. 2016. Biodiversity and metacommunity structure of animals along altitudinal gradients in tropical montane forests. Journal of Tropical Ecology. doi:10.1017/S0266467415000589.Google Scholar
WILLIG, M. R., LYONS, S. K. & STEVENS, R. D. 2009. Spatial methods for the macroecological study of bats. Pp. 216245 in Kunz, T. H. & Parsons, S. (eds.). Ecological and behavioral methods for the study of bats. (Second edition). Johns Hopkins University Press, Baltimore.Google Scholar
WILLIS, K. J. & BIRKS, H. J. B. 2006. What is natural? the need for a long-term perspective in biodiversity conservation. Science 314:12611265.CrossRefGoogle ScholarPubMed
WUNDERLE, J. M., LODGE, D. J. & WAIDE, R. B. 1992. Short-term effects of Hurricane Gilbert on terrestrial bird populations on Jamaica. The Auk 109:148166.CrossRefGoogle Scholar