Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-24T17:23:52.188Z Has data issue: false hasContentIssue false

Seed comas of bromeliads promote germination and early seedling growth by wick-like water uptake

Published online by Cambridge University Press:  17 December 2010

Stefan Wester
Affiliation:
University Oldenburg, Institute for Biology and Environmental Sciences, AG Functional Ecology, Box 2503, D-26111 Oldenburg, Germany
Gerhard Zotz*
Affiliation:
University Oldenburg, Institute for Biology and Environmental Sciences, AG Functional Ecology, Box 2503, D-26111 Oldenburg, Germany Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancon, Panama, Republic of Panama
*
1Corresponding author. Email: gerhard.zotz@uni-oldenburg.de

Extract

The wind dispersal of a plant propagule is likely to be improved by any structure that increases air resistance, e.g. the pappus of the achene of Asteraceae, the wings of Acer or dipterocarp fruits, or the plumose seed appendage which is characteristic of species of the subfamily Tillandsioideae in the Bromeliaceae. Not surprisingly then, promotion of airworthiness is usually assumed to be the primary function of this so-called ‘coma’ found in epiphytic Werauhia, Tillandsia, Guzmania or Catopsis species (Benzing 1980, 2000). However, the diverse structure of coma hairs with bifurcate cross-walls or hooks also assists in sticking to rough surfaces, such as tree bark and rocks, which indicates another important function: keeping seeds in place until germination and the development of roots (Benzing 2000, Palací et al. 2004). Multiple rather than singular functions of seed plumes or pappi have also been shown for soil-rooted plants in other plant families, where these structures are not only highly efficient for wind dispersal, but also for attachment to animal fur (Couvreur et al. 2004).

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ARDITTI, J. & GHANI, A. K. A. 2000. Numerical and physical properties of orchid seeds and their biological implications. New Phytologist 145:367421.CrossRefGoogle ScholarPubMed
BADER, M. Y., MENKE, G. & ZOTZ, G. 2009. A pronounced drought tolerance characterizes the early life stages of the epiphytic bromeliad Tillandsia flexuosa. Functional Ecology 23:472479.CrossRefGoogle Scholar
BENZING, D. H. 1978. Germination and early establishment of Tillandsia circinnata Schlecht. (Bromeliaceae) on some of its hosts and other supports in Southern Florida. Selbyana 5:95106.Google Scholar
BENZING, D. H. 1980. The biology of bromeliads. Mad River Press, Eureka. 305 pp.Google Scholar
BENZING, D. H. 2000. Bromeliaceae – profile of an adaptive radiation. Cambridge University Press, Cambridge. 690 pp.CrossRefGoogle Scholar
BERNAL, R., VALVERDE, T. & HERNANDEZ-ROSAS, L. 2005. Habitat preference of the epiphyte Tillandsia recurvata (Bromeliaceae) in a semi-desert environment in Central Mexico. Canadian Journal of Botany 83:12381247.CrossRefGoogle Scholar
CASCANTE-MARÍN, A., WOLF, J. H. D., OOSTERMEIJER, J. G. B. & DEN NIJS, J. C. M. 2008. Establishment of epiphytic bromeliads in successional tropical premontane forests in Costa Rica. Biotropica 40:441448.CrossRefGoogle Scholar
COUVREUR, M., CHRISTIAEN, B., VERHEYEN, K. & HERMY, M. 2004. Large herbivores as mobile links between isolated nature reserves through adhesive seed dispersal. Applied Vegetation Science 7:229236.CrossRefGoogle Scholar
GOODE, L. K. & ALLEN, M. F. 2009. Seed germination conditions and implications for establishment of an epiphyte, Aechmea bracteata (Bromeliaceae). Plant Ecology 204;179188.CrossRefGoogle Scholar
GROSS, E. M. 1988. Bromelienstudien. IV. Zur Morphologie der Bromeliaceen-Samen unter Berücksichtigung systematisch-taxonomischer Aspekte. Tropisch Subtropische Pflanzenwelt 64:1215.Google Scholar
GROSS, E. M. 1992. Die Samen der Bromeliaceae. Teil 1. Die Bromelie 1992:6166.Google Scholar
MANTOVANI, A. & RICARDO RIOS, I. 2008. Factors limiting seed germination of terrestrial bromeliads in the sandy coastal plains (Restinga) of Maricá, Rio de Janeiro, Brazil. Rodriguésia 59:135150.CrossRefGoogle Scholar
MÜLLER, F. 1895. Die Keimung einiger Bromeliaceen. Berichte der Deutschen Botanischen Gesellschaft 13:175182.Google Scholar
MURREN, C. J. & ELLISON, A. M. 1998. Seed dispersal characteristics of Brassavola nodosa (Orchidaceae). American Journal of Botany 85:675680.CrossRefGoogle ScholarPubMed
PALACÍ, C. A., BROWN, G. K. & TUTHILL, D. E. 2004. The seeds of Catopsis (Bromeliaceae: Tillandsioideae). Systematic Botany 29:518527.CrossRefGoogle Scholar
SHELDON, J. C. & LAWRENCE, J. T. 1973. The dispersal effectiveness of the achene–pappus units of selected compositae in steady winds with convection. New Phytologist 72:665675.CrossRefGoogle Scholar
SZIDAT, L. 1922. Die Samen der Bromeliaceen in ihrer Anpassung an den Epiphytismus. Botanisches Archiv 1:2946.Google Scholar
ZOTZ, G. & SCHULTZ, S. 2008. The vascular epiphytes of a lowland forest in Panama – species composition and spatial structure. Plant Ecology 195:131141.CrossRefGoogle Scholar
ZOTZ, G., HIETZ, P. & SCHMIDT, G. 2001. Small plants, large plants – the importance of plant size for the physiological ecology of vascular epiphytes. Journal of Experimental Botany 52:20512056.CrossRefGoogle ScholarPubMed