Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T21:07:57.027Z Has data issue: false hasContentIssue false

High primary productivity under submerged soil raises the net ecosystem productivity of a secondary mangrove forest in eastern Thailand

Published online by Cambridge University Press:  12 April 2012

Sasitorn Poungparn*
Affiliation:
Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
Akira Komiyama
Affiliation:
Laboratory of Forest Ecology, Faculty of Applied Biological Science, Gifu University, Gifu, Japan501-1193
Tanuwong Sangteian
Affiliation:
Department of Marine and Coastal Resources, Ministry of Natural Resources and Environment, Bangkok, Thailand
Chatree Maknual
Affiliation:
Department of Marine and Coastal Resources, Ministry of Natural Resources and Environment, Bangkok, Thailand
Pipat Patanaponpaiboon
Affiliation:
Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
Vilanee Suchewaboripont
Affiliation:
Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
*
1Corresponding author. Email: sasitorn.p@chula.ac.th

Extract

The distribution of mangrove forests is limited to the coastal zones of tropical and subtropical regions, and their total area is far smaller than that of upland forests (Spalding et al. 2010). Mangrove forests often show unique patterns of biomass allocation and carbon dynamics because they are periodically submerged by tides (Komiyama et al. 2008). Therefore, the contribution of mangrove forests to the global carbon fixation process should be carefully evaluated even though their distribution area is limited.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALONGI, D. M. 2011. Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. Environmental Science and Policy 14:462470.CrossRefGoogle Scholar
ARAÚJO, A. C., NOBRE, A. D., KRUIJT, B., ELBERS, J. A., DALLAROSA, R., STEFANI, P., RAINDOW, C., MANZI, A. O., CULF, A. D., GASH, J. H. C., VALENTINI, R. & KABAT, P. 2002. Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: the Manaus LBA site. Journal of Geophysical Research 107:D208090, doi:10.1029/2001JD000676.CrossRefGoogle Scholar
BARR, J. G., ENGAL, V. M., FUENTES, J. D., ZIEMAN, J. C., O'HALLORAN, T. L., SMITH, T. J. & ANDERSON, G. H. 2010. Controls on mangrove forest–atmosphere carbon dioxide exchanges in western Everglades National Park. Journal of Geophysical Research 115: G02020, doi:10.1029/2009JG001186.CrossRefGoogle Scholar
BARR, J. G., FUENTES, J. D., O'HALLORAN, T. L., BARR, D. & ZIEMAN, J. C. 2006. Carbon assimilation by mangrove forest in the Florida Everglades. Amalgam 1:2737.Google Scholar
DAY, J. W., CORONADO-MOLINA, C., VERA-HERRERA, F. R., TWILLEY, R., RIVERA-MONROY, V. H., ALVAREZ-GUILLEN, H., DAY, R. H. & CONNER, W. 1996. A 7 year record of above-ground net primary productivity in a southeastern Mexican mangrove forest. Aquatic Botany 55:3960.CrossRefGoogle Scholar
DONATO, D. C., KAUFFMAN, J. B., MURDIYARSO, D., KURNIANTO, S., STIDHAM, M. & KANNINEN, M. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience (letters) 4:293297.CrossRefGoogle Scholar
DONATO, D. C., KAUFFMAN, J. B., MACKENZIE, R. A., AINSWORTH, A. & PFLEEGER, A. Z. 2012. Whole-island carbon stocks in the tropical Pacific: implications for mangrove conservation and upland restoration. Journal of Environmental Management 97:8996.CrossRefGoogle ScholarPubMed
HOUGHTON, R. A. 2002. Magnitude, distribution and causes of terrestrial carbon sinks and some implications for policy. Climate Policy 2:7188.CrossRefGoogle Scholar
KAUFFMAN, J. B., HEIDER, C., COLE, T. G., DWIRE, K. A. & DONATO, D. C. 2011. Ecosystem carbon stocks of Micronesian mangrove forest. Wetlands 31:343352.CrossRefGoogle Scholar
KHAN, N. I., SUWA, R. & HAGIHARA, A. 2009. Biomass and aboveground net primary productivity in a subtropical mangrove stand of Kandelia obovata (S., L,) Yong at Mango Wetland, Okinawa, Japan. Wetlands Ecological Management 17:585599.CrossRefGoogle Scholar
KIRA, T. & SHIDEI, , T. 1967. Primary productivity and turnover of organic matter in different forest ecosystems of the western Pacific. Japanese Journal of Ecology 17:7087.Google Scholar
KOMIYAMA, A., POUNGPARN, S. & KATO, S. 2005. Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology 21:471477.CrossRefGoogle Scholar
KOMIYAMA, A., ONG, J. E. & POUNGPARN, S. 2008. Allometry, biomass, and productivity of mangrove forests: a review. Aquatic Botany 89:128137.CrossRefGoogle Scholar
LOVELOCK, C. E. 2008. Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11:342354.CrossRefGoogle Scholar
LUYSSAERT, S., SCHULZE, E. D., BÖRNER, A., KNOHL, A., HESSENMÖLLER, D., LAW, B. E., CIAIS, P. & GRACE, J. 2008. Old-growth forests as global carbon sinks. Nature (Letters) 455:213215.CrossRefGoogle ScholarPubMed
MACDICKEN, K. G. 1997. A guide to monitoring carbon storage in forestry and agro forestry projects. Winrock International, Arlington. 87 pp.Google Scholar
MILLER, S. D., GOULDEN, M. L., MENTON, M. C., ROCHA, H. R., FREITAS, H. C., FIGUEIRA, A. M. S. & SOUSA, C. A. D. 2004. Biometric and micrometeorological measurements of tropical forest carbon balance. Ecological Applications 14:114126.CrossRefGoogle Scholar
POUNGPARN, S., KOMIYAMA, A., TANAKA, A., SANGTIEAN, T, MAKNUAL, C., KATO, S., TANAPERMPOOL, P. & PATANAPONPAIBOON, P. 2009. Carbon dioxide emission through soil respiration in a secondary mangrove forest of eastern Thailand. Journal of Tropical Ecology 25:393400.CrossRefGoogle Scholar
ROSS, M. S., RUIZ, P. L., TELESNICKI, G. J. & MEEDER, J. F. 2001. Estimating above-ground biomass and productivity in mangrove communities of Biscayne National Park, Florida (USA). Wetlands Ecology and Management 9:2737.CrossRefGoogle Scholar
SHERMAN, R. E., FAHEY, T. J. & MARTINEZ, P. 2003. Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems 6:384398.CrossRefGoogle Scholar
SPALDING, M., KAINUMA, M. & COLLINS, L. 2010. World atlas of mangroves. Earthscan, London. 319 pp.CrossRefGoogle Scholar
TOMLINSON, P. B. 1986. The botany of mangroves. Cambridge University Press, Cambridge. 419 pp.Google Scholar