Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T20:50:34.167Z Has data issue: false hasContentIssue false

Environmental changes during secondary succession in a tropical dry forest in Mexico

Published online by Cambridge University Press:  02 August 2011

Edwin Lebrija-Trejos*
Affiliation:
Wageningen University, Forest Ecology and Forest Management Group, Centre for Ecosystem Studies, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
Eduardo A. Pérez-García
Affiliation:
Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Ecología y Recursos Naturales, Ciudad Universitaria, México 04510, D.F., México
Jorge A. Meave
Affiliation:
Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Ecología y Recursos Naturales, Ciudad Universitaria, México 04510, D.F., México
Lourens Poorter
Affiliation:
Wageningen University, Forest Ecology and Forest Management Group, Centre for Ecosystem Studies, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
Frans Bongers
Affiliation:
Wageningen University, Forest Ecology and Forest Management Group, Centre for Ecosystem Studies, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
*
1Corresponding author. Present address: Tel Aviv University, Faculty of Life Sciences, Department of Plant Sciences, Tel Aviv 69978, Israel. Email: elebrija@post.tau.ac.il

Abstract:

Vegetation and environment change mutually during secondary succession, yet the idiosyncrasies of the vegetation effect on the understorey environment are poorly understood. To test whether the successional understorey environment changes predictably and is shaped by the structure and seasonality of tropical dry forests, we estimated basal area and vegetation cover, and measured understorey temperature, light and moisture conditions, in 17 plots forming a 60-y chronosequence and a mature forest. Light and air and soil temperature decreased with time (75−15% of open-sky radiation, 31.7−29.3 °C, and +2.5 °C to −0.5 °C relative to ambient, respectively), whereas relative humidity increased (67−74%). Soil water availability increased with early-successional development (−45 to −1 kPa) but decreased afterwards (to −18 kPa). The first axis of a PCA of the rainy-season environment explained 60% of the variation and was strongly related to air temperature and relative humidity. During tropical dry-forest succession, such factors may be more important than light, the reduction in which is not extreme compared with taller and more vertically stratified wet forests. Seasonality significantly affected the successional environmental gradients, which were marked mainly during the wet season. Environmental heterogeneity was higher in the wet than in the dry season, and larger for resources (light and water) than for conditions (temperature and humidity). The wet-season increase in environmental heterogeneity potentially creates differential growing scenarios; the environmental harshness of the dry season would mostly challenge seedling survival.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AERTS, R., NEGUSSIE, A., MAES, W., NOVEMBER, E., HERMY, M. & MUYS, B. 2007. Restoration of dry Afromontane forest using pioneer shrubs as nurse-plants for Olea europaea ssp. cuspidata. Restoration Ecology 15:129138.CrossRefGoogle Scholar
ASBJORNSEN, H., ASHTON, M. S., VOGT, D. J. & PALACIOS, S. 2004. Effects of habitat fragmentation on the buffering capacity of edge environments in a seasonally dry tropical oak forest ecosystem in Oaxaca, Mexico. Agriculture, Ecosystems & Environment 103:481495.CrossRefGoogle Scholar
ASHTON, P. M. S. 1992. Some measurements of the microclimate within a Sri Lankan tropical rainforest. Agricultural and Forest Meteorology 59:217235.Google Scholar
ASNER, G. P. 1998. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment 64:234253.CrossRefGoogle Scholar
BAZZAZ, F. A. 1996. Plants in changing environments: linking physiological, population, and community ecology. Cambridge University Press, Cambridge. 332 pp.Google Scholar
BRIENEN, R. J. W., LEBRIJA-TREJOS, E., VAN BREUGEL, M., PÉREZ-GARCÍA, E. A., BONGERS, F., MEAVE, J. A. & MARTÍNEZ-RAMOS, M. 2009. The potential of tree rings for the study of forest succession in southern Mexico. Biotropica 41:186195.CrossRefGoogle Scholar
BROWN, M. J. & PARKER, G. G. 1994. Canopy light transmittance in a chronosequence of mixed-species deciduous forests. Canadian Journal of Forestry Research 24:16941703.CrossRefGoogle Scholar
BROWN, N. 1993. The implications of climate and gap microclimate for seedling growth conditions in a Bornean lowland rain forest. Journal of Tropical Ecology 9:153168.CrossRefGoogle Scholar
BROWN, S. & LUGO, A. E. 1990. Tropical secondary forests. Journal of Tropical Ecology 6:132.CrossRefGoogle Scholar
BULLOCK, S. H., MOONEY, H. A. & MEDINA, E. (eds.) 1995. Seasonally dry tropical forests. Cambridge University Press, Cambridge. 450 pp.CrossRefGoogle Scholar
CAMARGO, J. L. C. & KAPOS, V. 1995. Complex edge effects on soil moisture and microclimate in central Amazonian forest. Journal of Tropical Ecology 11:205221.CrossRefGoogle Scholar
CANHAM, C. D., DENSLOW, J. S., PLATT, W. J., RUNKLE, J. R., SPIES, T. A. & WHITE, P. S. 1990. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Canadian Journal of Forest Research 20:620631.CrossRefGoogle Scholar
CERVERA, J. C., ANDRADE, J. L., GRAHAM, E. A., DURÁN, R., JACKSON, P. C. & SIMÁ, J. L. 2007. Photosynthesis and optimal light microhabitats for a rare cactus, Mammillaria gaumeri, in two tropical ecosystems. Biotropica 39:620627.Google Scholar
CHIARELLO, N. 1984. Leaf energy balance in the wet lowlands tropics. Pp. 8598 in Medina, E., Mooney, H. A. & Vázquez-Yánez, C. (eds.). Physiological ecology of plants in the wet tropics. W. Junk Publishers, The Hague.CrossRefGoogle Scholar
CLARK, D. B. 1996. Abolishing virginity. Journal of Tropical Ecology 12:735739.Google Scholar
DENSLOW, J. S. 1980. Gap partitioning among tropical rainforest trees. Biotropica 12:4755.Google Scholar
EAMUS, D. & PRIOR, L. 2001. Ecophysiology of trees of seasonally dry tropics: comparisons among phenologies. Advances in Ecological Research 32:113197.CrossRefGoogle Scholar
ENGELBRECHT, B. M. J. & HERZ, H. M. 2001. Evaluation of different methods to estimate understorey light conditions in tropical forests. Journal of Tropical Ecology 17:207224.Google Scholar
ENQUIST, B. J. 2002. Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiology 22:10451064.CrossRefGoogle Scholar
EWEL, J. 1977. Differences between wet and dry successional tropical ecosystems. International Journal of Tropical Geology, Geography and Ecology 1:103117.Google Scholar
EWEL, J. 1980. Tropical succession: manifold routes to maturity. Biotropica 12:27.CrossRefGoogle Scholar
FELTON, C. M. M. 1979. Water usage and microclimate. Water, Air, & Soil Pollution 12:91101.CrossRefGoogle Scholar
FETCHER, N., OBERBAUER, S. & STRAIN, B. 1985. Vegetation effects on microclimate in lowland tropical forest in Costa Rica. International Journal of Biometeorology 29:145155.CrossRefGoogle Scholar
FETCHER, N., OBERBAUER, S. F. & CHAZDON, R. L. 1994. Physiological ecology of plants. Pp. 128141 in McDade, L., Bawa, K. S., Hespenheide, H. & Hartshorn, G. S. (eds.). La Selva: ecology and natural history of a Neotropical forest. University of Chicago Press, Chicago.Google Scholar
GERHARDT, K. 1996. Effects of root competition and canopy openness on survival and growth of tree seedlings in a tropical seasonal dry forest. Forest Ecology and Management 82:3348.CrossRefGoogle Scholar
GIVNISH, T. J. 2002. Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica 36:703743.CrossRefGoogle Scholar
GUARIGUATA, M. R. & OSTERTAG, R. 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148:185206.CrossRefGoogle Scholar
HAVERD, V., CUNTZ, M., LEUNING, R. & KEITH, H. 2007. Air and biomass heat storage fluxes in a forest canopy: calculation within a soil vegetation atmosphere transfer model. Agricultural and Forest Meteorology 147:125139.CrossRefGoogle Scholar
HEITHECKER, T. D. & HALPERN, C. B. 2007. Edge-related gradients in microclimate in forest aggregates following structural retention harvests in western Washington. Forest Ecology and Management 248:163173.CrossRefGoogle Scholar
HENNENBERG, K. J., GOETZE, D., SZARZYNSKI, J., ORTHMANN, B., REINEKING, B., STEINKE, I. & POREMBSKI, S. 2008. Detection of seasonal variability in microclimatic borders and ecotones between forest and savanna. Basic and Applied Ecology 9:275285.CrossRefGoogle Scholar
HOLMGREN, M., SCHEFFER, M. & HUSTON, M. A. 1997. The interplay of facilitation and competition in plant communities. Ecology 78:19661975.CrossRefGoogle Scholar
HUC, R., FERHI, A. & GUEHL, J. M. 1994. Pioneer and late stage tropical rainforest tree species (French Guiana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential. Oecologia 99:297305.CrossRefGoogle ScholarPubMed
ISHIDA, A., DILOKSUMPUN, S., LADPALA, P., STAPORN, D., PANUTHAI, S., GAMO, M., YAZAKI, K., ISHIZUKA, M. & PUANGCHIT, L. 2006. Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand. Tree Physiology 26:643656.Google Scholar
ISHII, H. T., TANABE, S. & HIURA, T. 2004. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. Forest Science 50:342355.Google Scholar
JONES, H. G. 1992. Plants and microclimate: a quantitative approach to environmental plant physiology. (Second edition). Cambridge University Press, Cambridge. 428 pp.Google Scholar
KAPOS, V. 1989. Effects of isolation on the water status of forest patches in the Brazilian Amazon. Journal of Tropical Ecology 5:173185.CrossRefGoogle Scholar
KATUL, G. G., PALMROTH, S. & OREN, R. 2009. Leaf stomatal responses to vapour pressure deficit under current and CO2-enriched atmosphere explained by the economics of gas exchange. Plant, Cell and Environment 32:968979.CrossRefGoogle Scholar
KIEFT, T. L. 1994. Grazing and plant-canopy effects on semiarid soil microbial biomass and respiration. Biology and Fertility of Soils 18:155162.CrossRefGoogle Scholar
KÜPPERS, M., MOTZER, T., SCHMITT, D., OHLEMACHER, C., ZIMMERMANN, R., HORNA, V., KÜPPERS, B. I. L. & METTE, T. 2008. Stand structure, transpiration responses in trees and vines and stand transpiration of different forest types within the mountain rainforest. Pp. 243258 in Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.). Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin.CrossRefGoogle Scholar
LARCHER, W. 2003. Physiological plant ecology. (Fourth edition). Springer, Berlin. 513 pp.CrossRefGoogle Scholar
LAWSON, G. W., ARMSTRONG-MENSAH, K. O. & HALL, J. B. 1970. A catena in tropical moist semi-deciduous forest near Kade, Ghana. Journal of Ecology 58:371398.Google Scholar
LEBRIJA-TREJOS, E., BONGERS, F., PÉREZ-GARCÍA, E. A. & MEAVE, J. A. 2008. Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 40:422431.CrossRefGoogle Scholar
LEBRIJA-TREJOS, E., MEAVE, J. A., POORTER, L., PÉREZ-GARCÍA, E. A. & BONGERS, F. 2010b. Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession. Perspectives in Plant Ecology, Evolution and Systematics 12:267275.CrossRefGoogle Scholar
LEBRIJA-TREJOS, E., PÉREZ-GARCÍA, E. A., MEAVE, J. A., BONGERS, F. & POORTER, L. 2010a. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91:386398.CrossRefGoogle Scholar
LEONG, E. C., HE, L. & RAHARDJO, H. 2002. Factors affecting the filter paper method for total and matric suction measurements. Geotechnical Testing Journal 25:321332.CrossRefGoogle Scholar
LEVINS, R. 1968. Evolution in changing environments. Princeton University Press, Princeton. 132 pp.Google Scholar
LIEBERMAN, D. & LI, M. 1992. Seedling recruitment patterns in a tropical dry forest in Ghana. Journal of Vegetation Science 3:375382.CrossRefGoogle Scholar
LOIK, M. E. & HOLL, K. D. 2001. Photosynthetic responses of tree seedlings in grass and under shrubs in early-successional tropical old fields, Costa Rica. Oecologia 127:4050.CrossRefGoogle ScholarPubMed
LOUCKS, O. L. 1970. Evolution of diversity, efficiency, and community stability. American Zoologist 10:1725.CrossRefGoogle ScholarPubMed
MARTHEWS, T. R., BURSLEM, D. F. R. P., PATON, S. R., YANGÜEZ, F. & MULLINS, C. E. 2008. Soil drying in a tropical forest: three distinct environments controlled by gap size. Ecological Modelling 216:369384.CrossRefGoogle Scholar
MAYAUX, P., HOLMGREN, P., ACHARD, F., EVA, H., STIBIG, H.-J. & BRANTHOMME, A. 2005. Tropical forest cover change in the 1990s and options for future monitoring. Philosophical Transactions of the Royal Society B: Biological Sciences 360:373384.CrossRefGoogle ScholarPubMed
MAYER, P. M. 2008. Ecosystem and decomposer effects on litter dynamics along an old field to old-growth forest successional gradient. Acta Oecologica 33:222230.CrossRefGoogle Scholar
MCLAREN, K. P. & MCDONALD, M. A. 2003. The effects of moisture and shade on seed germination and seedling survival in a tropical dry forest in Jamaica. Forest Ecology and Management 183:6175.CrossRefGoogle Scholar
MESSIER, C., PARENT, S. & BERGERON, Y. 1998. Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests. Journal of Vegetation Science 9:511520.CrossRefGoogle Scholar
MICHILES, A. A. D. S. & GIELOW, R. 2008. Above-ground thermal energy storage rates, trunk heat fluxes and surface energy balance in a central Amazonian rainforest. Agricultural and Forest Meteorology 148:917930.CrossRefGoogle Scholar
MOTULSKY, H. & CHRISTOPOULOS, A. 2004. Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. Oxford University Press, Oxford. 351 pp.CrossRefGoogle Scholar
MURPHY, P. G. & LUGO, A. E. 1986. Ecology of tropical dry forest. Annual Review of Ecology and Systematics 17:6788.Google Scholar
MYERS, J. A. & KITAJIMA, K. 2007. Carbohydrate storage enhances seedling shade and stress tolerance in a Neotropical forest. Journal of Ecology 95:383395.CrossRefGoogle Scholar
NICOTRA, A. B., CHAZDON, R. L. & IRIARTE, S. V. B. 1999. Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests. Ecology 80:19081926.CrossRefGoogle Scholar
PÉREZ-GARCÍA, E. A., MEAVE, J. A. & GALLARDO, C. 2001. Vegetación y flora de la región de Nizanda, Istmo de Tehuantepec, Oaxaca, México. Acta Botanica Mexicana 56:1988.CrossRefGoogle Scholar
PÉREZ-GARCÍA, E. A., MEAVE, J. A., VILLASEÑOR, J. L., GALLARDO-CRUZ, J. A. & LEBRIJA-TREJOS, E. E. 2010. Vegetation heterogeneity and life-strategy diversity in the flora of the heterogeneous landscape of Nizanda, Oaxaca, Mexico. Folia Geobotanica 45:143161.CrossRefGoogle Scholar
PINKER, R. 1980. The microclimate of a dry tropical forest. Agricultural Meteorology 22:249265.Google Scholar
POORTER, L. 2005. Resource capture and use by tropical forest tree seedlings and their consequences for competition. Pp. 3564 in Burslem, D. F. R. P., Pinard, M. A. & Hartley, S. E. (eds.). Biotic interactions in the tropics: their role in the maintenance of species diversity. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
POORTER, L. 2009. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist 181:890900.Google Scholar
QUESTAD, E. J. & FOSTER, B. L. 2008. Coexistence through spatio–temporal heterogeneity and species sorting in grassland plant communities. Ecology Letters 11:717726.CrossRefGoogle ScholarPubMed
RATKOWSKY, D. A. 1990. Handbook of nonlinear regression models. Marcel Dekker, New York. 241 pp.Google Scholar
RICHARDS, P. W., WALSH, R. P. D., BAILLIE, I. C. & GREIG-SMITH, P. 1996. The tropical rain forest: an ecological study. (Second edition). Cambridge University Press, Cambridge. 600 pp.Google Scholar
SANTIAGO, L. S. & MULKEY, S. S. 2005. Leaf productivity along a precipitation gradient in lowland Panama: patterns from leaf to ecosystem. Trees – Structure and Function 19:349356.CrossRefGoogle Scholar
SCHULZ, J. P. 1960. Ecological studies on rain forest in northern Suriname. Noord-Hollandsche Uitgevers Maatschappij, Amsterdam. 267 pp.Google Scholar
SHIRKE, P. A. & PATHRE, U. V. 2004. Influence of leaf-to-air vapour pressure deficit (vpd) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. Journal of Experimental Botany 55:21112120.CrossRefGoogle ScholarPubMed
SWAINE, M. D., LIEBERMAN, D. & HALL, J. B. 1990. Structure and dynamics of a tropical dry forest in Ghana. Vegetatio 88:3152.CrossRefGoogle Scholar
UHL, C., CLARK, K., CLARK, H. & MURPHY, P. 1981. Early plant succession after cutting and burning in the upper Rio Negro region of the Amazon basin. Journal of Ecology 69:631649.CrossRefGoogle Scholar
VALLADARES, F. 2003. Light heterogeneity and plants: from ecophysiology to species coexistence and biodiversity. Progress in Botany 64:439471.CrossRefGoogle Scholar
VAN BREUGEL, M., MARTÍNEZ-RAMOS, M. & BONGERS, F. 2006. Community dynamics during early secondary succession in Mexican tropical rain forests. Journal of Tropical Ecology 22:663674.CrossRefGoogle Scholar
VEENENDAAL, E. M., SWAINE, M. D., BLAY, D., YELIFARI, N. B. & MULLINS, C. E. 1996. Seasonal and long-term soil water regime in west African tropical forest. Journal of Vegetation Science 7:473482.CrossRefGoogle Scholar
WARREN, R. J. 2008. Mechanisms driving understorey evergreen herb distributions across slope aspects: as derived from landscape position. Plant Ecology 198:297308.CrossRefGoogle Scholar
WHITMORE, T. C. 1998. An introduction to tropical rain forests. Oxford University Press, Oxford. 282 pp.Google Scholar