Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T15:28:30.980Z Has data issue: false hasContentIssue false

Contrasting herbivory patterns and leaf fluctuating asymmetry in Heliocarpus pallidus between different habitat types within a Mexican tropical dry forest

Published online by Cambridge University Press:  31 May 2011

Pablo Cuevas-Reyes*
Affiliation:
Laboratorio de Ecología de Interacciones Bióticas, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo Ciudad Universitaria, Morelia, Michoacán, México, C.P. 58060 Ecologia Evolutiva & Biodiversidade/DBG, C P 486, ICB/Universidade Federal de Minas Gerais, UFMG, 31270 901 Belo Horizonte, MG, Brazil
Ken Oyama
Affiliation:
Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
Antonio González-Rodríguez
Affiliation:
Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
G. Wilson Fernandes
Affiliation:
Ecologia Evolutiva & Biodiversidade/DBG, C P 486, ICB/Universidade Federal de Minas Gerais, UFMG, 31270 901 Belo Horizonte, MG, Brazil
Luis Mendoza-Cuenca
Affiliation:
Laboratorio de Ecología de la Conducta, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, México, C.P. 58060
*
1Corresponding author. Email: pcuevas@oikos.unam.mx

Abstract:

Leaf fluctuating asymmetry (FA) is considered an important indicator of environmentally induced stress in plants, but the relationship between herbivory and FA levels is not clear. In this study we compared leaf size and shape, leaf area consumed by herbivorous insects, and FA levels between individuals of Heliocarpus pallidus (Tiliaceae) from two adjacent and contrasting habitat types (deciduous and riparian) in the Chamela–Cuixmala tropical dry-forest biosphere reserve. Ten individuals of H. pallidus were collected in each habitat type. Leaf shape was assessed using geometric morphometric techniques. Results indicated statistically significant differences in leaf shape between individuals from the two habitat types. In individuals from the riparian habitat leaf area (mean = 42.3 ± 1.2 cm2), herbivory levels (mean = 25.5% ± 1.8%) and FA levels (mean = 0.38 ± 0.04 cm) were significantly higher than in individuals from the deciduous habitat (17.2 ± 3.5 cm2; 9.6% ± 1.0% and 0.18 ± 0.04 cm, respectively). Within habitats, significant correlations were found between total leaf area and percentage leaf area removed by insects (R2 = 0.92 in riparian habitats, R2 = 0.9 in deciduous habitats), and between percentage leaf area removed and FA (R2 = 0.70 in riparian habitats, R2 = 0.79 in deciduous habitats). As has been suggested for other plant species, it is possible that the more favourable conditions in the riparian habitat enhance leaf growth, resulting in higher FA. Also, individuals in this habitat might be characterized by lower chemical defence and/or higher nutritional quality, which would explain the higher herbivory levels.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ABRAHAMSON, W. G. & MCCREA, K. D. 1985. Seasonal nutrient dynamics of Solidago altissima (Compositae). Bulletin of the Torrey Botanical Club 112:414420.CrossRefGoogle Scholar
AERTS, R. & CHAPIN, F. S. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30:167.Google Scholar
ALBARRÁN-LARA, A. L., MENDOZA-CUENCA, L., VALENCIA-ÁVALOS, S., GONZÁLEZ-RODRÍGUEZ, A. & OYAMA, K. 2010. Leaf fluctuating asymmetry increases with hybridization and introgression between Quercus magnoliifolia and Q. resinosa (Fagaceae) through an altitudinal gradient in Mexico. International Journal of Plant Science 171:310322.CrossRefGoogle Scholar
ALLENBACH, D. M., SULLIVAN, K. B. & LYDY, M. J. 1999. Higher fluctuating asymmetry as a measure of susceptibility to pesticides in fishes. Environmental Toxicology and Chemistry 18;899905.CrossRefGoogle Scholar
ANCIAES, M. & MARINI, M. A. 2000. The effects of fragmentation on fluctuating asymmetry in passerine birds of Brazilian tropical forests. Journal of Applied Ecology 37:10131028.CrossRefGoogle Scholar
BAÑUELOS, M. J., SIERRA, M. & OBESO, J. R. 2004. Sex, secondary compounds and asymmetry. Effects on plant–herbivore interaction in a dioecious shrub. Acta Oecologica 25;151157.CrossRefGoogle Scholar
BLACKENHORN, W. U., REUSCH, T. & MUEHLHAUSER, C. 1998. Fluctuating asymmetry, body size and sexual selection in the dung fly Sepsis cynipsea: testing the good genes assumptions and predictions. Journal of Evolutionary Biology 11:735753.Google Scholar
BOBBINK, R. K., HICKS, K., GALLOWAY, J., SPRANGER, T., ALKEMADE, R., ASHMORE, M., BUSTAMANTE, M., CINDERBY, S., DAVIDSON, E., DENTENER, F., EMMETT, B., ERISMAN, J. W., FENN, M., GILLIAM, F., NORDIN, A., PARDO, L. & DE VRIES, W. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications 20:3059.CrossRefGoogle ScholarPubMed
BOOKSTEIN, F. L. 1989. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions Pattern Analysis and Machine Intelligence: 11:567585.CrossRefGoogle Scholar
BOOKSTEIN, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge, University Press, New York. 435 pp.Google Scholar
BOOKSTEIN, F. L. 1996. Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology 58:313365.CrossRefGoogle ScholarPubMed
BROWN, B. K. & LAWTON, J. H. 1991. Herbivory and the evolution of leaf size and shape. Philosophical Transactions of the Royal Society of London, series B 333:265272.Google Scholar
BULLOCK, S. H. 1985. Breeding systems in the flora of tropical deciduous forest in Mexico. Biotropica 4:287301.CrossRefGoogle Scholar
BULLOCK, S. H. & SOLÍS-MAGALLANES, A. 1990. Phenology of canopy trees of a tropical deciduous forest in Mexico. Biotropica 22:2335.CrossRefGoogle Scholar
CALAGARI, M., MODIRRAHMATI, A. R. & ASADI, F. 2006. Morphological variation in leaf traits of Populus euphratica Oliv. natural populations. International Journal of Agriculture and Biology 8:754758.Google Scholar
COLEY, P. D. & BARONE, J. A. 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics 27:305335.CrossRefGoogle Scholar
COLEY, P. D., BRYANT, J. P. & CHAPIN, F. S. 1985. Resource availability and plant antiherbivore defense. Science 230:895899.CrossRefGoogle ScholarPubMed
CORNELISSEN, T. & STILING, P. 2005. Perfect is best: low leaf fluctuating asymmetry reduces herbivory by leaf miners. Oecologia 142:4656CrossRefGoogle ScholarPubMed
CORNELISSEN, T., STILING, P. & DRAKE, B. 2003. Elevated CO2 decreases leaf fluctuating asymmetry and herbivory by leaf miners on two oak species. Global Change Biology 10:2736.CrossRefGoogle Scholar
COTLER, E., DURÁN, E. & SIEBE, C. 2002. Caracterización morfo-edafológica y calidad de sitio de un bosque tropical caducifolio. Pp. 1747 in Noguera, F. A., Vega, R. H. J, García, A. N. A., & Quesada, M. (eds.). Historia natural de Chamela. Universidad Nacional Autónoma de México, Instituto de Biología, México.Google Scholar
CRAWLEY, M. J., JOHNSTON, A. E., SILVERTOWN, J., DODD, M., DE MAZANCOURT, C., HEART, M. S., HENMAN, D. F., EDWARDS, G. R. 2005. Determinants of species richness in the park grass experiment. American Naturalist 165:179192.CrossRefGoogle ScholarPubMed
CUEVAS-REYES, P., QUESADA, M., HANSON, P., DIRZO, R. & OYAMA, K. 2004a. Diversity of gall-forming insects in a Mexican tropical dry forest: the importance of plant species richness, life forms, host plant age and plant density. Journal of Ecology 92:707716.CrossRefGoogle Scholar
CUEVAS-REYES, P., QUESADA, M., SIEBE, C. & OYAMA, K. 2004b. Spatial patterns of herbivory by gall-forming insects: a test to the soil fertility hypothesis in a Mexican tropical dry forest. Oikos 107:181189.CrossRefGoogle Scholar
CUEVAS-REYES, P., QUESADA, M. & OYAMA, K. 2006. Abundance and leaf damage caused by gall-inducing insects in a Mexican tropical dry forest. Biotropica 38:107115.CrossRefGoogle Scholar
CUNNINGHAM, S. A., SUMMERHAYES, B. & WESTOBY, M. 1999. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecological Monographs 69:569588CrossRefGoogle Scholar
DÍAZ, M., PULIDO, M. J. & MØLLER, A. M. 2004. Herbivore effects on developmental instability and fecundity of holm oaks. Oecologia 139:224234.CrossRefGoogle ScholarPubMed
EAMUS, D. 1999. Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trends in Ecology and Evolution 4:116Google Scholar
FAIR, J. M. & BRESHEARS, D. D. 2005. Drought stress and fluctuating asymmetry in Quercus undulata leaves: confounding effects of absolute and relative amounts of stress? Journal of Arid Environments 62:235249.CrossRefGoogle Scholar
FILIP, V., DIRZO, R., MAASS, J. M. & SARUKHÁN, J. 1995. Within-and among-year variation in the levels of herbivory on the foliage of tress from a Mexican tropical deciduous forest. Biotropica 27:7886.CrossRefGoogle Scholar
FONSECA, C. R., FLECK, T. & FERNANDES, G. W. 2006. Processes driving ontogenetic succession of galls in a canopy tree. Biotropica 38:514521.CrossRefGoogle Scholar
FRANKIE, G. W., BAKER, H. G. & OPLER, P. A. 1974. Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. Journal of Ecology 62:881899.CrossRefGoogle Scholar
FREEMAN, D. C., GRAHAM, J. H., TRACY, M., EMLEN, J. M. & ALADOS, C. L. 1999. Developmental instability as a means of assessing stress in plants: a case study using electromagnetic fields and soybeans. International Journal of Plant Science 160:157166.CrossRefGoogle ScholarPubMed
GARCÍA-OLIVA, F., SVESHTAROVA, B. & OLIVA, M. 2003. Seasonal effects on soil organic carbon dynamics in a tropical deciduous forest ecosystem in western Mexico. Journal of Tropical Ecology 19:179188.CrossRefGoogle Scholar
GIVNISH, T. J. 1984. Leaf and canopy adaptations in tropical forests. Pp. 5484 in Medina, E.Mooney, H. A. & Vázquez-Yañez, C. (eds.). Physiological ecology of plants of the wet tropics. Dr. Junk, The Hague.Google Scholar
GIVNISH, T. J. 1986. On the economy of plant form and function. Cambridge University Press, New York.717 pp.Google Scholar
GOUGH, L., OSENBERG, C. W., GROSS, K. L. & COLLINS, S. L. 2000. Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89:428439.CrossRefGoogle Scholar
HAGEN, S. B., IMS, R. A., YOCCOZ, N. G. & SORLIBRATEN, O. 2008. Fluctuating asymmetry as an indicator of elevation stress and distribution limits in mountain birch (Betula pubescens). Plant Ecology 195:157163.CrossRefGoogle Scholar
HANSEN, L. T. T., AMUNDSEN, T. & FORSGREN, E. 1999. Symmetry: attractive not only to females. Proceedings of the Royal Society of London B Biological Sciences 266:12351240.CrossRefGoogle Scholar
HORN, H. S. 1971. The adaptative geometry of trees. Princeton University Press, Princeton. 144 pp.Google Scholar
HOCHWENDER, C. G. & FRITZ, R. S. 1999. Fluctuating asymmetry in a Salix hybrid system: the importance of genetic versus environmental causes. Evolution 53:408416.CrossRefGoogle Scholar
JANZEN, D. H. 1981. Patterns of herbivory in a tropical deciduous forest. Biotropica 15:108111.Google Scholar
JONAS, C. S. & GEBER, M. A. 1999. Variation among populations of Clarkia unguiculata (Onagraceae) along altitudinal and latitudinal gradients. American Journal of Botany 86:333343.CrossRefGoogle ScholarPubMed
KOZLOV, M. V. 2004. Leaf fall in white birch (Betula pubescens) is independent of leaf asymmetry. Canadian Journal of Botany 82:910913.CrossRefGoogle Scholar
KURSAR, T. A. & COLEY, P. D. 2003. Convergence in defense syndromes of young leaves in tropical rainforests. Biochemical Systematics and Ecology 31:929949.CrossRefGoogle Scholar
KOZLOV, M. V., WILSEY, B., KORICHEVA, J. & HAUKIOJA, E. 1996. Fluctuating asymmetry of birch leaves increases under pollution impact. Journal of Applied Ecology 33:14891495.CrossRefGoogle Scholar
LEAMY, L. J. & KLINGENBERG, C. P. 2005. The genetics and evolution of fluctuating asymmetry. Annual Review of Ecology and Systematics 36:121.CrossRefGoogle Scholar
LEMPA, K., MARTEL, J., KORICHEVA, J., HAUKIOJA, K., OSSIPOV, V., OSSIPOVA, S. & PIHLAJA, K. 2000. Covariation of fluctuating asymmetry, herbivory and chemistry during birch leaf expansion. Oecologia 122:354360.CrossRefGoogle ScholarPubMed
LEMPA, K., AGRAWAL, A. A., SALMINEN, J. P., TURUNEN, T., OSSIPOV, V., OSSIPOVA, S., HAUKIOJA, E. & PIHLAJA, K. 2004. Rapid herbivore-induced changes in mountain birch phenolics and nutritive compounds and their effects on performance of the major defoliator, Epirrita autumnata. Journal of Chemical Ecology 30:303321.CrossRefGoogle ScholarPubMed
LI, C., ZHANG, X., LIU, X., LUUKKANEN, O. & BERNINGER, F. 2006. Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient. Silva Fennica 40:513.CrossRefGoogle Scholar
LOTT, E. J., BULLOCK, S. H. & SOLIS-MAGALLANES, J. A. 1987. Floristic diversity and structure of upland and arroyo forests of Coastal Jalisco. Biotropica 3:228235.CrossRefGoogle Scholar
LOWMAN, M. D. 1985. Temporal and spatial variability in insect grazing of the canopies of five Australian rainforest tree species. Australian Journal of Ecology 10:724.CrossRefGoogle Scholar
MARTEL, J., LEMPA, K. & HAUKIOJA, E. 1999. Effect of stress and rapid growth on fluctuating asymmetry and insect damage in birch leaves. Oikos 86:208216.CrossRefGoogle Scholar
MILLIGAN, J. R., KREBS, R. A. & MAL, T. K. 2008. Separating developmental and environmental effects on fluctuating asymmetry in Lythrum salicaria and Penthorum sedoides. International Journal of Plant Science 169:625630.CrossRefGoogle Scholar
MØLLER, A. P. 1996. Parasitism and developmental instability of hosts: a review. Oikos 77:189196.CrossRefGoogle Scholar
MØLLER, A. P. 1997. Developmental stability and fitness: a review. American Naturalist 149:916932.CrossRefGoogle ScholarPubMed
MØLLER, A. P. 1999. Elm, Ulmus glabra, leaf asymmetry and Dutch elm disease. Oikos 85:109116.CrossRefGoogle Scholar
MØLLER, A. P. & DE LOPE, F. 1998. Herbivory affects developmental stability of stone oak Quercus rotundifolia. Oikos 82:246252.CrossRefGoogle Scholar
MØLLER, A. P. & ERIKSSON, M. 1994. Patterns of fluctuating asymmetry in flowers: implications for sexual selection in plants. Journal of Evolutionary Biology 7:97113.CrossRefGoogle Scholar
MØLLER, A. P. & SHYKOFF, J. A. 1999. Morphological developmental stability in plants: patterns and causes. International Journal of Plant Science 160:135146.CrossRefGoogle ScholarPubMed
MØLLER, A. P. & SWADDLE, J. P. 1997. Asymmetry, developmental stability, and evolution. Oxford University Press, Oxford. 290 pp.CrossRefGoogle Scholar
MURALI, K. S. & SUKUMAR, R. 1993. Leaf flushing phenology and herbivory in a tropical dry deciduous forest, southern India. Oecologia 94:114119.CrossRefGoogle Scholar
NEVES, F. S., ARAÚJO, L. S., ESPÍRITO-SANTO, M. M., FAGUNDES, M., FERNANDES, G. W., SÁNCHEZ-AZOFEIFA, G. A. & QUESADA, M. 2010. Canopy herbivory and insect herbivore diversity in a dry forest–savanna transition in Brazil. Biotropica 42:112118.CrossRefGoogle Scholar
NIINEMETS, U., BILGER, W., KULL, O. & TENHUEN, J. D. 1998. Acclimatation of high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in phothosynthetic capacity along a canopy light gradient. Plant Cell and Environment 21:12051218.CrossRefGoogle Scholar
OPLER, P. A., FRANKIE, G. H. & BAKER, H. G. 1980. Comparative phenological studies of treelet and shrubs species in tropical wet and dry forests in the lowlands of Costa Rica. Journal of Animal Ecology 68:167188.CrossRefGoogle Scholar
PALMER, R. A. 1996. Waltzing with asymmetry. BioScience 46:518532.CrossRefGoogle Scholar
PALMER, R. A. & STROBECK, C. 1986. Fluctuating asymmetry: measurement, analysis, patterns. Annual Review of Ecology and Systematics 17:391421.CrossRefGoogle Scholar
PALMER, R. A. & STROBECK, C. 1992. Fluctuating asymmetry as a measure of developmental stability: implications of non-normal distribution and power statistical tests. Acta Zoologica Fennica 191:5772.Google Scholar
PALMER, R.A. & STROBECK, C. 2003. Fluctuating asymmetry analyses revisited. Pp. 136 in Polak, M. (ed.). Developmental instability (DI): causes and consequences. Oxford University Press, Oxford.Google Scholar
PASCUAL-ALVARADO, E., CUEVAS-REYES, P., QUESADA, M. & OYAMA, K. 2008. Interactions between galling insects and leaf-feeding insects: the role of plant phenolic compounds and their possible interference with herbivores. Journal of Tropical Ecology 24;329336.CrossRefGoogle Scholar
PERRING, M. P., HEDING, L. O., LEVIN, S. A., MACGRODDY, M., DE MAZANCOURT, C. 2008. Increased plant growth from nitrogen addition should conserve phosphorous in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America–Biological Sciences 105:19711976.CrossRefGoogle ScholarPubMed
RETTIG, J. E., FULLER, R. C., CORBETT, A. L. & GETTY, T. 1997. Fluctuating asymmetry indicates levels of competition in an even-aged poplar clone. Oikos 80:123127.CrossRefGoogle Scholar
RIKOWSKI, A. & GRAMMER, K. 1999. Human body odour, symmetry and attractiveness. Proceedings of the Royal Society of London B Biological Sciences 266;869874.CrossRefGoogle ScholarPubMed
ROHLF, F. J. 1998. On applications of geometric morphometrics to studies of ontogeny and phylogeny. Systematic Biology 47:147158CrossRefGoogle ScholarPubMed
ROY, B. A. & STANTON, M. L. 1999. Asymmetry of wild mustard, Sinapis arvensis (Brassicaceae), in response to severe physiological stresses. Journal of Evolutionary Biology 12:440449.CrossRefGoogle Scholar
ROYER, D. L., WILF, P., JANESKO, D. A., KOWALSKI, E. A. & DILCHER, D. L. 2005. Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany 92:11411151.CrossRefGoogle ScholarPubMed
RZEDOWSKI, J. 1978. Vegetación de México. Editorial Limusa, México. 417 pp.Google Scholar
SAKAI, K. & SHIMAMOTO, Y. 1965. Developmental instability in leaves and flowers of Nicotiana tabacum. Genetics 51:801813.CrossRefGoogle ScholarPubMed
SAS. 2000. Categorical data analysis using the SAS system. SAS Institute, Cary. 619 pp.Google Scholar
SÖDERMAN, F., VAN DONGEN, S., PAKKASMAA, S. & MERILA, J. 2007. Environmental stress increases skeletal fluctuating asymmetry in the moor frog Rana arvalis. Oecologia 151:593604.CrossRefGoogle ScholarPubMed
SOKAL, R. R., CROVELLO, T. J. & UNNASCH, R. S. 1986. Geographic variation of vegetative characters of Populus deltoides. Systematic Botany 11:141155.CrossRefGoogle Scholar
URIBE-SALAS, D., SÁENZ-ROMERO, C., GONZÁLEZ-RODRÍGUEZ, A., TÉLLEZ-VALDÉZ, O. & OYAMA, K. 2008. Foliar morphological variation in the white oak Quercus rugosa Née (Fagaceae) along a latitudinal gradient in Mexico: potential implications for management and conservation. Forest Ecology and Management. 256:21212126.CrossRefGoogle Scholar
VAN SCHAIK, C. P., TERBORGH, J. W. & WRIGHT, S. J. 1993. The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annual Review in Ecology and Systematics 24:353377.CrossRefGoogle Scholar
VAN VALEN, L. 1962. A study of fluctuating asymmetry. Evolution 16:125142.CrossRefGoogle Scholar
VELICKOVIC, M. & PERISIC, S. 2006. Leaf fluctuating asymmetry of common plantain as an indicator of habitat quality. Plant Biosystems 140:138145.CrossRefGoogle Scholar
WAUTERS, L. A., DHONDT, A. A., KNOTHE, H. & PARKIN, D. T. 1996. Fluctuating asymmetry and body size as indicators of stress in red squirrel populations in woodland fragments. Journal of Applied Ecology 33:735740.CrossRefGoogle Scholar
WILSEY, B. J., HAUKIOJA, E., KORICHEVA, J. & SULKINOJA, M. 1998. Leaf fluctuating asymmetry increases with hybridization and elevation in tree-line birches. Ecology 79:20922099.CrossRefGoogle Scholar
WOLDA, H. 1980. Seasonality of tropical insects. Journal of Animal Ecology 49:277290.CrossRefGoogle Scholar
WOLDA, H. 1988. Insect seasonality: why? Annual Review Ecology and Systematics 19:118.CrossRefGoogle Scholar
ZELDITCH, M. L., SWIDERSKI, D. L., SHEETS, H. D. & FINK, W. L. 2004. Geometric morphometrics for biologists: a primer. Elsevier Academic Press, London. 443 pp.Google Scholar
ZVEREVA, E., KOZLOV, M. & HAUKIOJA, E. 1997. Stress responses of Salix borealis to pollution and defoliation. Journal of Applied Ecology 34:13871396.CrossRefGoogle Scholar