Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T14:53:26.024Z Has data issue: false hasContentIssue false

Tree roots can penetrate deeply in African semi-deciduous rain forests: evidence from two common soil types

Published online by Cambridge University Press:  08 December 2014

Vincent Freycon*
Affiliation:
CIRAD, UPR BSEF, F-34398 Montpellier, France
Christelle Wonkam
Affiliation:
CIRAD, UPR BSEF, F-34398 Montpellier, France ISEM, UMR 5554, F-34095 Montpellier, France Faculty of Science, University of Yaoundé, ENS, P.O. Box 047, Yaoundé, Cameroon
Adeline Fayolle
Affiliation:
Ministère des Eaux, Forêts, Chasse et Pêche, P.O. Box 3314, Bangui, Central African Republic Gembloux Agro-Bio Tech, FORTROP, B-5030 Gembloux, Belgique
Jean-Paul Laclau
Affiliation:
CIRAD, UMR Eco&Sols, F-34060 Montpellier, France
Eric Lucot
Affiliation:
UMR 6249 Chrono-Environnement, F-25030 Besançon, France
Christophe Jourdan
Affiliation:
CIRAD, UMR Eco&Sols, F-34060 Montpellier, France
Guillaume Cornu
Affiliation:
CIRAD, UPR BSEF, F-34398 Montpellier, France
Sylvie Gourlet-Fleury
Affiliation:
CIRAD, UPR BSEF, F-34398 Montpellier, France
*
1Corresponding author. Email: vincent.freycon@cirad.fr

Abstract:

Despite the important functional role of deep roots in withdrawing water during drought, direct measurements of root distribution are very rare in tropical rain forests. The aim of this study was to investigate the root distribution of Entandrophragma cylindricum, a common tree species in the Central African semi-deciduous rain forest, in Ferralsols and Arenosols. We dug two pits to a depth of 6 m in Ferralsols and two pits to a depth of 3 m in Arenosols, close to E. cylindricum trees. The vertical soil profiles were divided into 10 × 10-cm grid cells and the roots counted were distributed in three diameter classes. We fitted a root distribution model to our dataset. We found that vertical root distribution was shallower in Arenosols than in Ferralsols. Root penetration was not stopped even by a Ferralsol with high gravel content in its subsoil. Overall, our measurements showed that 95% of all roots were distributed to depths of between 258 and 564 cm from the soil surface, which is much deeper than the 95 cm depth previously reported in the literature for tropical rain forests. As sampling depth could explain this discrepancy, we recommend a sampling depth of at least 3–5 m to accurately estimate root distribution. The drier the dry season, the deeper the sampling depth should be. Our results are consistent with global models of root distribution in forest ecosystems, which are driven by climate variables. We thus suggest that deep rooting could be common in rain forests with a marked dry season.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AKKERMANS, T., LAUWAET, D., DEMUZERE, M., VOGEL, G., NOUVELLON, Y., ARDO, J., CAQUET, B., DE GRANDCOURT, A., MERBOLD, L., KUTSCH, W. & VAN LIPZIG, N. 2012. Validation and comparison of two soil-vegetation-atmosphere transfer models for tropical Africa. Journal of Geophysical Research – Biogeosciences 117:115.CrossRefGoogle Scholar
BAILLIE, I. C., ASHTON, P. S., CHIN, S. P., DAVIES, S. J., PALMIOTTO, P. A., RUSSO, S. E. & TAN, S. 2006. Spatial associations of humus, nutrients and soils in mixed dipterocarp forest at Lambir, Sarawak, Malaysian Borneo. Journal of Tropical Ecology 22:543553.CrossRefGoogle Scholar
BEAUVAIS, A. 2009. Ferricrete biochemical degradation on the rainforest-savannas boundary of Central African Republic. Geoderma 150:379388.CrossRefGoogle Scholar
BLASCO, F., WHITMORE, T. C. & GERS, C. 2000. A framework for the worldwide comparison of tropical woody vegetation types. Biological Conservation 95:175189.CrossRefGoogle Scholar
BONSOR, H. C. & MCDONALD, A. M. 2011. An initial estimate of depth to groundwater across Africa. British Geological Survey, Nottingham. 26 pp.Google Scholar
BOULVERT, Y. 1983. Carte pédologique de la république centrafricaine à 1:1000000. ORSTOM, Paris. 126 pp.Google Scholar
BOULVERT, Y. 1986. Carte phytogéographique de la République Centrafricaine (Feuille Ouest-Feuille Est) à 1:1000000. ORSTOM, Paris. 131 pp.Google Scholar
BOULVERT, Y. 1996. Etude géomorphologique de la république centrafricaine. Carte à 1:1000000 en deux feuilles Ouest et Est. Notice explicative n°110. ORSTOM Editions, Paris. 258 pp.Google Scholar
BRUNO, R. D., DA ROCHA, H. R., DE FREITAS, H. C., GOULDEN, M. L. & MILLER, S. D. 2006. Soil moisture dynamics in an eastern Amazonian tropical forest. Hydrological Processes 20:24772489.CrossRefGoogle Scholar
CANADELL, J., JACKSON, R. B., EHLERINGER, J. B., MOONEY, H. A., SALA, O. E. & SCHULZE, E. D. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583595.CrossRefGoogle ScholarPubMed
CERRI, C. C. & VOLKOFF, B. 1987. Carbon content in a yellow latosol of Central Amazon rain forest. Acta Oecologica–Oecologia Generalis 8:2942.Google Scholar
CHRISTINA, M., LACLAU, J. P., GONCALVES, J. L. M., JOURDAN, C., NOUVELLON, Y. & BOUILLET, J. P. 2011. Almost symmetrical vertical growth rates above and below ground in one of the world's most productive forests. Ecosphere 2:110.CrossRefGoogle Scholar
DRIESSEN, P., DECKERS, J., SPAARGAREN, O. & NACHTERGAELE, F. 2001. Lecture notes on the major soils of the world. Food and Agriculture Organization, Rome. 334 pp.Google Scholar
FAN, Y. & MIGUEZ-MACHO, G. 2010. Potential groundwater contribution to Amazon evapotranspiration. Hydrology and Earth System Sciences 14:20392056.CrossRefGoogle Scholar
GERDAT. 1974. Sapelli. Bois et Forêts des Tropiques 154:2740.Google Scholar
GOND, V., FAYOLLE, A., PENNEC, A., CORNU, G., MAYAUX, P., CAMBERLIN, P., DOUMENGE, C., FAUVET, N. & GOURLET-FLEURY, S. 2013. Vegetation structure and greenness in Central Africa from Modis multi-temporal data. Philosophical Transactions of the Royal Society B 368: 20120309.CrossRefGoogle ScholarPubMed
HOLDO, R. M. & TIMBERLAKE, J. 2008. Rooting depth and above-ground community composition in Kalahari sand woodlands in western Zimbabwe. Journal of Tropical Ecology 24:169176.CrossRefGoogle Scholar
ICHII, K., HASHIMOTO, H., WHITE, M. A., POTTERS, C., HUTYRA, L. R., HUETE, A. R., MYNENI, R. B. & NEMANIS, R. R. 2007. Constraining rooting depths in tropical rainforests using satellite data and ecosystem modeling for accurate simulation of gross primary production seasonality. Global Change Biology 13:6777.CrossRefGoogle Scholar
KINGSBURY, N. & KELLMAN, M. 1997. Root mat depths and surface soil chemistry in southeastern Venezuela. Journal of Tropical Ecology 13:475479.CrossRefGoogle Scholar
KLEIDON, A. & HEIMANN, M. 2000. Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian deforestation. Climate Dynamics 16:183199.CrossRefGoogle Scholar
LACLAU, J. P., ARNAUD, M., BOUILLET, J. P. & RANGER, J. 2001. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients. Tree Physiology 21:129136.CrossRefGoogle Scholar
LACLAU, J. P., TOUTAIN, F., M’BOU, A. T., ARNAUD, M., JOFFRE, R. & RANGER, J. 2004. The function of the superficial root mat in the biogeochemical cycles of nutrients in Congolese Eucalyptus plantations. Annals of Botany 93:249261.CrossRefGoogle ScholarPubMed
LACLAU, J. P., SILVA, E. A., LAMBAIS, G., BERNOUX, M., LE MAIRE, G., STAPE, J. L., BOUILLET, J. P., GONÇALVES, J. L. M., JOURDAN, C. & NOUVELLON, Y. 2013. Dynamics of soil exploration by fine roots down to a depth of 10 m in Eucalyptus grandis plantations. Frontiers in Plant Science 4:112.CrossRefGoogle ScholarPubMed
LEBRUN, J.-P. & STORK, A. L. 2011. Tropical African flowering plants. Ecology and distribution. Vol. 6. Burseraceae-Apiaceae. Addendum to volumes 1–5 (Families A–C). Conservatoire et Jardin Botanique de la ville de Genève, Genève. 398 pp.Google Scholar
LUCAS, Y., BOULET, R. & CHAUVEL, A. 1990. In situ genesis of stone lines – Demonstrative example from a lateritic cover in Brazilian Amazonia. Comptes Rendus Académie des Sciences, Série II 311:713718.Google Scholar
LUCOT, E. 1994. Influence des caractéristiques de la pierrosité des sols sur la prospection racinaire et l’alimentation hydrique des arbres. Application à l’estimation de la valeur des sols forestiers. Université de Franche-Comté, Besançon. 101 pp.Google Scholar
MAGIER, J. & RAVINA, I. 1984. Rock fragments and soil depth as factors in land evaluation of terra rossa. Pp. 99103 in Nichols, J. D., Brown, P. L. & Grant, W. J. (eds.). Erosion and productivity of soils containing rock fragments. Special Publication 13. Soil Science Society of America, Madison.Google Scholar
MAKARIEVA, A. M. & GORSHKOV, V. G. 2007. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences 11:10131033.CrossRefGoogle Scholar
NEPSTAD, D. C., DE CARVALHO, C. R., DAVIDSON, E. A., JIPP, P. H., LEFEBVRE, P. A., NEGREIROS, G. H., DA SILVA, E. D., STONE, T. A., TRUMBORE, S. E. & VIEIRA, S. 1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666669.CrossRefGoogle Scholar
NEPSTAD, D., LEFEBVRE, P., DA SILVA, U. L., TOMASELLA, J., SCHLESINGER, P., SOLORZANO, L., MOUTINHO, P., RAY, D. & BENITO, J. G. 2004. Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Global Change Biology 10:704717.CrossRefGoogle Scholar
OHNUKI, Y., SHIMIZU, A., CHANN, S., TORIYAMA, J., KIMHEAN, C. & ARAKI, M. 2008. Seasonal change in thick regolith hardness and water content in a dry evergreen forest in Kampong Thom Province, Cambodia. Geoderma 146:94101.CrossRefGoogle Scholar
REJOU-MECHAIN, M., PELISSIER, R., GOURLET-FLEURY, S., COUTERON, P., NASI, R. & THOMPSON, J. D. 2008. Regional variation in tropical forest tree species composition in the Central African Republic: an assessment based on inventories by forest companies. Journal of Tropical Ecology 24:663674.CrossRefGoogle Scholar
RIEDACKER, A. 1978. Study of deviation of horizontal or oblique roots of poplar cutting encountering an obstacle – Applications on container design. Annales des Sciences Forestières 35:118.CrossRefGoogle Scholar
RUIZ, L., VARMA, M. R. R., KUMAR, M. S. M., SEKHAR, M., MARÉCHAL, J.-C., DESCLOITRES, M., RIOTTE, J., KUMAR, S., KUMAR, C. & BRAUN, J.-J. 2010. Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): Regolith matric storage buffers the groundwater recharge process. Journal of Hydrology 380:460472.CrossRefGoogle Scholar
SAYER, E. J., TANNER, E. V. J. & CHEESMAN, A. W. 2006. Increased litterfall changes fine root distribution in a moist tropical forest. Plant and Soil 281:513.CrossRefGoogle Scholar
SCHENK, H. J. 2008. The shallowest possible water extraction profile: a null model for global root distributions. Vadose Zone Journal 7:11191124.CrossRefGoogle Scholar
SCHENK, H. J. & JACKSON, R. B. 2002. The global biogeography of roots. Ecological Monographs 72:311328.CrossRefGoogle Scholar
SCHENK, H. J. & JACKSON, R. B. 2005. Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126:129140.CrossRefGoogle Scholar
SEGALEN, P. 1969. Le remaniement des sols et la mise en place de la stone-line en Afrique. Cahiers ORSTOM, série Pédolologique 7:113131.Google Scholar
SPRACKLEN, D. V., ARNOLD, S. R. & TAYLOR, C. M. 2012. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489:282286.CrossRefGoogle ScholarPubMed
STERNBERG, L. D. L., GREEN, L., MOREIRA, M. Z., NEPSTAD, D., MARTINELLI, L. A. & VICTORIA, R. 1998. Root distribution in an Amazonian seasonal forest as derived from delta C-13 profiles. Plant and Soil 205:4550.CrossRefGoogle Scholar
TARDIEU, F. 1988. Analysis of the spatial variability of maize root density. 1. Effect of wheel compaction on the spatial arrangement of roots. Plant and Soil 107:259266.CrossRefGoogle Scholar
VITOUSEK, P. M. & SANFORD, R. L. 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics 17:137167.CrossRefGoogle Scholar
YONGO, O. 2003. Contribution aux études floristiques, phytogéographique et phytosociologiques de la forêt de Ngotto (République centrafricaine). Acta Botanica Gallica 150:119124.CrossRefGoogle Scholar