Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-lnsrr Total loading time: 0.18 Render date: 2021-05-08T09:00:20.528Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Stand structure and species co-occurrence in mixed and monodominant Central African tropical forests

Published online by Cambridge University Press:  01 August 2014

Marie Noël K. Djuikouo
Affiliation:
Department of Botany and Plant Physiology, Faculty of Science, University of Buea, P.O Box 63, Buea, Cameroon
Kelvin S.-H. Peh
Affiliation:
Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
Charlemagne K. Nguembou
Affiliation:
African Forest Forum, c/o World Agroforestry Centre, P.O Box 30677–00100, Nairobi, Kenya
Jean-Louis Doucet
Affiliation:
Laboratory of Tropical and Subtropical Forest Regions, Unit of Forest and Nature Management, Gembloux Agro-Bio Tech, University of Liège, Belgium
Simon L. Lewis
Affiliation:
Department of Geography, University College London, WC1E 3BT, UK School of Geography, University of Leeds, Leeds LS2 9JT, UK
Bonaventure Sonké
Affiliation:
Plant Systematic and Ecology Laboratory, Higher Teacher's Training College, University of YaoundéI, P.O. Box 047, Yaoundé, Cameroon
Corresponding
E-mail address:

Abstract:

We compare forests dominated by Gilbertiodendron dewevrei at the Dja Biosphere Reserve (Cameroon) with adjacent high-diversity mixed forests in terms of tree-species composition and stand structure, in order to understand the co-occurrence of mixed forest tree species in the monodominant forest. A total of 18 1-ha permanent plots were established in the two forest types. In each plot, all trees with dbh ≥10 cm were identified as were those <10 cm dbh within a subsample of 300 m2. Species richness was significantly different between the two forest types. Mixed forest had an average of 109 species ha−1 for trees ≥10 cm dbh and 137 species for trees <10 cm dbh. By contrast, G. dewevrei-dominated forest had an average of 47 species ha−1 (≥10 cm dbh) and 92 species (<10 cm dbh). There was no significant difference in terms of stem density of the trees with dbh <10 cm between the two forests (mixed: 3.7 stems m−2; monodominant: 3.1 stems m−2). As G. dewevrei is a shade-tolerant species that can regenerate under its own shade, its higher stem density and basal area can reduce species richness of an area.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

ANBARASHAN, M. & PARTHASARATHY, N. 2013. Tree diversity of tropical dry evergreen forests dominated by single or mixed species on the Coromandel Coast of India. Tropical Ecology 54:179190.Google Scholar
CONDIT, R., ASHTON, P., BASLEV, H., BROKAW, N., BUNYAVEJCHEWIN, S., CHUYONG, G., CO, L., DATTARAJA, H. S., DAVIES, S., ESUFALI, S., EWANGO, C. E. N., FOSTER, R., GUNATILEKE, N., GUNATILEKE, S., HERNANDEZ, C., HUBBELL, S., JOHN, R., KENFACK, D., KIRAKIPRAYOON, S., HALL, P., HART, T., ITOH, A., LAFRANKIE, J., LIENGOLA, I., LAGUNZAD, D., LAO, S., LOSOS, E., MAGARD, E., MAKANA, J.-R., MANOKARAN, N., NAVARETTE, H., MOHAMMED, N. S., OKHUBO, T., PÉREZ, R., SMAPER, C., HUA SENG, L., SUKUMAR, R., SVENNING, J. C., TAN, S., THOMAS, D., THOMSON, J., VALLEJO, M., VILLA MUÑOZ, G., VALENCIA, R., YAMAKURA, T. & ZIMMERMAN, J. 2005. Tropical tree alpha-diversity: results from a worldwide network of large plots. Biologiske Skrifter 55:565582.Google Scholar
CONNELL, J. H. & LOWMAN, M. D. 1989. Low-diversity tropical rainforests: some possible mechanisms for their existence. American Naturalist 134:88119.CrossRefGoogle Scholar
DEGAGNE, R. S., HENKEL, T. W., STEINBERG, S. J. & FOX, L. 2009. Identifying Dicymbe corymbosa monodominant forests in Guyana using satellite imagery. Biotropica 41:7–15.Google Scholar
DJUIKOUO, K. M. N. 2012. Diversité et dynamique forestière dans la Réserve de Biosphère du Dja. Ph.D. thesis, University of Yaounde I. 193 pp.Google Scholar
DJUIKOUO, K. M. N., DOUCET, J.-L., NGUEMBOU, K. C., LEWIS, L. S. & SONKÉ, B. 2010. Diversity and aboveground biomass in three tropical forest types in the Dja Biosphere Reserve, Cameroon. African Journal of Ecology 48:10531063.CrossRefGoogle Scholar
FAYS, R. 2008. Des forêts … des bois. Impribeau Sainte-Ode, Brussels. 1022 pp.Google Scholar
GERARD, P. 1960. Etude écologique de la forêt dense à Gilbertiodendron dewevrei dans la région de l’Uele. Serie Scientifique 87. Institut National pour l’Étude Agronomique de Congo Belge, Brussels. 159 pp.Google Scholar
GHAZOUL, J. & SHEIL, D. 2010. Tropical rain forest ecology, diversity, and conservation. Oxford University Press, New York. 516 pp.Google Scholar
GROSS, N. D., TORTI, S. D., FEENER, D. H. & COLEY, P. D. 2000. Monodominance in an African rainforest: is reduced herbivory important? Biotropica 32:430439.CrossRefGoogle Scholar
HART, T. B. 1990. Monospecific dominance in tropical rain forests. Trends in Ecology and Evolution 5:610.CrossRefGoogle ScholarPubMed
HART, T. B. 1995. Seed, seedling and sub-canopy survival in monodominant and mixed forests of the Ituri Forest, Africa. Journal of Tropical Ecology 11:443459.CrossRefGoogle Scholar
HART, T. B., HART, J. A. & MURPHY, P. G. 1989. Monodominant and species-rich forests of the humid tropics: causes for their co-occurrence. American Naturalist 133:613633.CrossRefGoogle Scholar
HUBBELL, S. P. & FOSTER, R. B. 1983. Diversity of canopy trees in a Neotropical forest and implications for the conservation of tropical trees. Pp. 2541 in Sutton, S. J., Whitmore, T. C. & Chadwick, A. C. (eds.). Tropical rain forest: ecology and management. Blackwell, Oxford.Google Scholar
HURLBERT, S. H. 1971. The non concept of species diversity: a critique and alternative parameters. Ecology 52:577588.CrossRefGoogle Scholar
LETOUZEY, R. 1985. Notice de la carte phytogéographique du Cameroun au 1/500000. Domaine de la forêt dense humide toujours verte. Institut de la Carte Internationale de la Végétation, Toulouse. 63142 pp.Google Scholar
LEWIS, L. S., LOPEZ-GONZALEZ, G., SONKÉ, B., AFFUM-BAFFOE, K., BAKER, T. R., OJO, L. O., PHILLIPS, O. L., REITSMA, J., WHITE, L., COMISKEY, J., EWANGO, C., FELDPAUSCH, T. R., HAMILTON, A. C., GLOOR, M., HART, T., HLADIK, A., DJUIKOUO, K. M. N., JON, L., LOVETT, J., MAKANA, J.-R., MALHI, Y., MBAGO, F. M., NDANGALASI, H. J., PEACOCK, J., PEH, K. S.-H., SHEIL, D., SUNDERLAND, T., SWAINE, M. D., TAPLIN, J., TAYLOR, D., SEAN, C. T., VOTERE, R. & HANNSJÖRG, W. 2009. Increasing carbon storage in intact African tropical forests. Nature 457:10031006.CrossRefGoogle Scholar
MAKANA, J.-R., HART, T. B. & HART, J. A. 1998. Forest structure and diversity of lianas and understory treelets in monodominant and mixed forest in the Ituri, Zaire. Pp. 429446 in Dallmeier, F. & Comiskey, J. A. (eds.). Forest biodiversity research, monitoring and modeling. Conceptual background and old world case studies. Vol. 20, Man and the biosphere series. The Parthenon Publishing Group, Pearl River.Google Scholar
MAKANA, J.-R., HART, T. B., HIBBS, D. E. & CONDIT, R. 2004. Stand structure and species diversity in the Ituri forest dynamics plots: a comparison of monodominant and mixed forest stands. Pp. 159174 in Losos, E. C. & Leigh, E. C. (eds.). Tropical forest diversity and dynamism. University of Chicago Press, Chicago.Google Scholar
MAKANA, J.-M., EWANGO, C. N., MCMAHON, S. M., THOMAS, S. C., HART, T. B. & CONDIT, R. 2011. Demography and biomass change in monodominant and mixed old-growth forest of the Congo. Journal of Tropical Ecology 27:447461.CrossRefGoogle Scholar
MARCON, E., HERAULT, B., BARALOTO, C. & LANG, G. 2012. The decomposition of Shannon's entropy and a confidence interval for beta diversity. Oikos 121:516522.CrossRefGoogle Scholar
MARCON, E., SCOTTI, I., HERAULT, B., ROSSI, V. & LANG, G. 2014. Generalization of the partitioning of Shannon diversity. PLOS ONE 9:e90289.CrossRefGoogle Scholar
PEH, K. S.-H., LEWIS, S. L. & LLOYD, J. 2011a. Mechanisms of monodominance in diverse tropical tree-dominated systems. Journal of Ecology 99:891898.CrossRefGoogle Scholar
PEH, K. S.-H., SONKÉ, B., LLOYD, J., QUESADA, C. A. & LEWIS, S. L. 2011b. Soil does not explain monodominance in a Central African tropical forest. PLOS ONE 6:19.CrossRefGoogle ScholarPubMed
PEH, K. S.-H., SONKÉ, B., SÉNÉ, O., DJUIKOUO, M. N. K., NGUEMBOU, C. K., TAEDOUMG, H., BEGNE., S. K. & LEWIS, S. L. 2014. Mixed-forest species establishment in a monodominant forest in central Africa: implications for tropical forest invasibility. PLOS ONE 9:97585.CrossRefGoogle Scholar
PUIG, H. 2002. La forêt tropicale humide. Éditions Belin, Paris. 448 pp.Google Scholar
RICHARDS, P. W. 1996. The tropical rain forest: an ecological study. (Second edition). Cambridge University Press, Cambridge. 575 pp.Google Scholar
SENTERRE, B. 2005. Recherches méthodologiques pour la typologie de la végétation et la phytogéographie des forêts denses d’Afrique tropicale. Ph.D. thesis, Université Libre de Bruxelles, Belgique. 345 pp.Google Scholar
SONKÉ, B. 2005. Forêts de la Réserve du Dja (Cameroun): études floristiques et structurales. Scripta Botanica Belgica 32:1144.Google Scholar
THÉBAULT, E. & FONTAINE, C. 2010. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853856.CrossRefGoogle ScholarPubMed
TORTI, S. D., COLEY, P. D. & KURSAR, T. A. 2001. Causes and consequences of monodominance in tropical lowland forests. American Naturalist 157:141153.CrossRefGoogle ScholarPubMed
WHITE, F. 1983. The vegetation of Africa. UNESCO, Paris. 365 pp.Google Scholar
WHITE, L. & EDWARDS, A. 2000. Conservation en forêt pluviale africaine: méthodes de recherches. Wildlife Conservation Society, New York. 444 pp.Google Scholar
WHITMORE, T. C. 1998. An introduction to tropical rain forests. (Second edition). Oxford University Press, Oxford. 296 pp.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Stand structure and species co-occurrence in mixed and monodominant Central African tropical forests
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Stand structure and species co-occurrence in mixed and monodominant Central African tropical forests
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Stand structure and species co-occurrence in mixed and monodominant Central African tropical forests
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *