Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-26T22:02:43.575Z Has data issue: false hasContentIssue false

Plant species selection by free-ranging cattle in southern Bolivian tropical montane forests

Published online by Cambridge University Press:  11 October 2010

Svenja Marquardt
WSL, Institute for Snow and Avalanche Research (SLF), Davos, Switzerland ETH Zurich, Institute of Plant, Animal and Agroecosystem Sciences, Zurich, Switzerland
Stephan G. Beck
Herbario Nacional de Bolivia, Universidad Mayor de San Andrés, La Paz, Bolivia
Felix D. Encinas
Universidad Autónoma Juan Misael Saracho, Tarija, Bolivia
Humberto Alzérreca A.
Herbario Nacional de Bolivia, Universidad Mayor de San Andrés, La Paz, Bolivia
Michael Kreuzer*
ETH Zurich, Institute of Plant, Animal and Agroecosystem Sciences, Zurich, Switzerland
Andrea C. Mayer
ETH Zurich, Institute of Plant, Animal and Agroecosystem Sciences, Zurich, Switzerland
1Corresponding author. Email:


The frequency of selection of functional groups and plant species by free-ranging cattle foraging in a diverse environment and its changes during the dry and the following prehumid seasons were investigated using direct observations and bite counting. The study was conducted at two sites in the Bolivian–Tucuman montane forests in southern Bolivia, by including datasets of a total of 16 animals. Across both study sites and the entire observation period (May to October/November), the cattle were found to select a broad spectrum of plant species from different functional groups. However, just a limited number of species made up a considerable contribution to overall plant selection. The functional group of the graminoids was selected most frequently, but their contribution to plant selection decreased significantly from 63.5% of total bites in May to 15.9% in September/October, in accordance with a decrease in availability. Selection of woody plants (shrubs and tree parts, the latter mainly in the form of leaf litter and fruits) increased with time, reaching its peak at the beginning of the prehumid season, while the herbs showed a curvilinear pattern of selection which was highest in August. Plant species belonging to the functional groups of ferns, climbers and epiphytes were also selected by the cattle, but generally at low relative proportions. Plant selection might be influenced by temporal differences in nutritional quality and availability of the preferred plant species and functional groups. Sampling behaviour seems to be the most likely reason for the inclusion of a broad range of plant species with overall low contribution to plant selection.

Research Article
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



ALVAREZG., M. G., M. 2003. Investigación descriptiva y analítica de los resultados del censo ganadero 2002. Servicio Nacional de Áreas Protegidas (SERNAP), Tarija, Bolivia. 58 pp.Google Scholar
AOAC (Association of Official Analytical Chemists). 1997. Official methods of analysis. (Sixteenth edition). AOAC Intl., Gaithersburg.Google Scholar
ARNOLD, I., CHÁVEZ, F., SALINAS, G. & ZAMORA, M. 2000. Plan de Manejo 2000–2004. Documento resumen para difusión. Reserva Nacional de Flora y Fauna Tariquía. PROMETA – (SERNAP). Tarija, Bolivia. 76 pp.Google Scholar
ATHANASIADOU, S. & KYRIAZAKIS, I. 2004. Plant secondary metabolites: antiparasitic effects and their role in ruminant production systems. Proceedings of the Nutrition Society 63:631639.CrossRefGoogle ScholarPubMed
BALL, J. P., DANELL, K. & SUNESSON, P. 2000. Response of a herbivore community to increased food quality and quantity: an experiment with nitrogen fertilizer in a boreal forest. Journal of Applied Ecology 37:247255.CrossRefGoogle Scholar
BELOVSKY, G. E. 1978. Diet optimization in a generalist herbivore: the moose. Theoretical Population Biology 14:105134.CrossRefGoogle Scholar
BONHAM, C. D. 1989. Measurements for terrestrial vegetation. John Wiley & Sons, New York. 338 pp.Google Scholar
BOURDY, G., DEWALT, S. J., CHÁVEZ DE MICHEL, L. R., ROCA, A., DEHARO, E., MUÑOZ, V., BALDERRAMA, L., QUENEVO, C. & GIMENEZ, A. 2000. Medicinal plants uses of the Tacana, an Amazonian Bolivian ethnic group. Journal of Ethnopharmacology 70:87109.CrossRefGoogle ScholarPubMed
BRYANT, J. P., REICHARDT, P. B. & CLAUSEN, T. P. 1992. Chemically mediated interactions between woody plants and browsing mammals. Journal of Range Management 45:1824.CrossRefGoogle Scholar
COOPER, S. D. B., KYRIAZAKIS, I. & NOLAN, J. V. 1995. Diet selection in sheep: the role of the rumen environment in the selection of a diet from two feeds that differ in their energy density. British Journal of Nutrition 74:3954.CrossRefGoogle ScholarPubMed
COOPER, S. M., OWEN-SMITH, N. & BRYANT, J. P. 1988. Foliage acceptability to browsing ruminants in relation to seasonal changes in the leaf chemistry of woody plants in a South African savanna. Oecologia 75:336342.CrossRefGoogle Scholar
DUMONT, B. & BOISSY, A. 2000. Grazing behaviour of sheep in a situation of conflict between feeding and social motivations. Behavioural Processes 49:131138.CrossRefGoogle Scholar
DUMONT, B. & GORDON, I. J. 2003. Diet selection and intake within sites and across landscapes. Pp. 175–194 in ‘t Mannetje, L., Ramírez-Avilés, L., Sandoval-Castro, C. A. & Ku-Vera, J. C. (eds.). Matching herbivore nutrition to ecosystems biodiversity. Proceedings of the VI International Symposium on the Nutrition of Herbivores. Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico.Google Scholar
DUMONT, B., CARRÈRE, P. & D'HOUR, P. 2002. Foraging in patchy grasslands: diet selection by sheep and cattle is affected by the abundance and spatial distribution of preferred species. Animal Research 51:367381.CrossRefGoogle Scholar
FREELAND, W. J. & JANZEN, D. H. 1974. Strategies in herbivory by mammals: the role of plant secondary compounds. American Naturalist 108:269289.CrossRefGoogle Scholar
GANSKOPP, D. & CRUZ, R. 1999. Selective differences between naive and experienced cattle foraging among eight grasses. Applied Animal Behaviour Science 62:293303.CrossRefGoogle Scholar
GENIN, D., VILLCA, Z. & ABASTO, P. 1994. Diet selection and utilization by llama and sheep in a high altitude-arid rangeland of Bolivia. Journal of Range Management 47:245248.CrossRefGoogle Scholar
GUEVARA, J. C., ESTEVEZ, O. R., STASI, C. R. & MONGE, A. S. 1996. Botanical composition of the seasonal diet of cattle in the rangelands of the Monte Desert of Mendoza, Argentina. Journal of Arid Environments 32:387394.CrossRefGoogle Scholar
GUEVARA, J. C., ESTEVEZ, O. R., STASI, C. R. & MONGE, A. S. 1997. Monthly botanical composition of the diet of cattle in the rangelands of Mendoza plain, Argentina. Journal of Arid Environments 36:655660.CrossRefGoogle Scholar
HIRATA, M., HASEGAWA, N., TAKAHASHI, T., CHOWDAPPA, R., OGURA, S., NOGAMI, K. & SONODA, T. 2008a. Grazing behaviour, diet selection and feed intake of cattle in a young tree plantation in southern Kyushu, Japan. Tropical Grasslands 42:170180.Google Scholar
HIRATA, M., HASEGAWA, N., TAKAHASHI, T., CHOWDAPPA, R., OGURA, S., NOGAMI, K. & SONODA, T. 2008b. Relationship between liveweight change of cattle and forage supply in a young tree plantation in southern Kyushu, Japan. Grassland Science 54:203210.CrossRefGoogle Scholar
HOLECHEK, J. L., PIEPER, R. D. & HERBEL, C. H. 1989. Range management. Principles and practices. Prentice-Hall, New Jersey. 501 pp.Google Scholar
HOFMANN, R. R. 1989. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443457.CrossRefGoogle ScholarPubMed
HUFFMAN, M. A. 2001. Self-medicative behavior in the African great apes: an evolutionary perspective into the origins of human traditional medicine. BioScience 51:651661.CrossRefGoogle Scholar
HUTCHINGS, M. R., GORDON, I. J., KYRIAZAKIS, I. & JACKSON, F. 2001. Sheep avoidance of faeces-contaminated patches leads to a trade-off between intake rate of forage and parasitism in subsequent foraging decisions. Animal Behaviour 62:955964.CrossRefGoogle Scholar
ILLIUS, A. W., CLARK, D. A. & HODGSON, J. 1992. Discrimination and patch choice by sheep grazing grass-clover swards. Journal of Animal Ecology 61:183194.CrossRefGoogle Scholar
ILLIUS, A. W., GORDON, I. J., ELSTON, D. A. & MILNE, J. D. 1999. Diet selection in goats: a test of intake-rate maximization. Ecology 80:10081018.CrossRefGoogle Scholar
KATJIUA, M. L. J. & WARD, D. 2006. Cattle diet selection during the hot-dry season in a semi-arid region of Namibia. African Journal of Range & Forage Science 23:5967.CrossRefGoogle Scholar
KIRMSE, R. D., PROVENZA, F. D. & MALECHEK, J. C. 1987. Clearcutting Brazilian semiarid tropics: observations on its effects on small ruminant nutrition during the dry season. Journal of Range Management 40:428432.CrossRefGoogle Scholar
MACÍA, M. J., GARCÍA, E. & VIDAURRE, P. J. 2005. An ethnobotanical survey of medicinal plants commercialized in the markets of La Paz and El Alto, Bolivia. Journal of Ethnopharmacology 97:337350.CrossRefGoogle Scholar
MARQUARDT, S. 2009. Activity and plant selection patterns of free-ranging cattle in Southern Bolivian mountain forests, and the impact of cattle stocking density on the woody vegetation. Doctoral thesis No. 18305. ETH Zurich, Switzerland. 155 pp.Google Scholar
MAYER, A. C. & HUOVINEN, C. 2007. Silvopastoralism in the Alps: native plant species selection under different grazing pressure. Ecological Engineering 29:372381.CrossRefGoogle Scholar
MENKE, K. H. & STEINGASS, H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28:755.Google Scholar
MOLEELE, N. M. 1998. Encroacher woody plant browse as feed for cattle. Cattle diet composition for three seasons at Olifants Drift, south-east Botswana. Journal of Arid Environments 40:255268.CrossRefGoogle Scholar
NAVARRO, G. 2004. Capitulo VIII. Provincia Biogeográfica Boliviano-Tucumana. Pp. 351451 in Navarro, G. & Maldonado, M. (eds.). Geografía ecológica de Bolivia: vegetación y ambientes acuáticos. (Second edition). Editorial: Centro de Ecología Simón I. Patiño-Departamento de Difusión. Cochabamba, Bolivia. 719 pp.Google Scholar
PFISTER, J. A. & MALECHEK, J. C. 1986. Dietary selection by goats and sheep in a deciduous woodland of northeastern Brazil. Journal of Range Management 39:2428.CrossRefGoogle Scholar
PYKE, G. H., PULLIAM, H. R. & CHARNOV, E. L. 1977. Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology 52:137154.CrossRefGoogle Scholar
RIBERA, M. O. & LIBERMAN, M. 2006. El uso de la tierra y los recursos de la biodiversidad en las áreas protegidas de Bolivia. Un análisis critico con propuestas para su conservación y manejo sostenible. SERNAP-GEF II. La Paz. 520 pp.Google Scholar
SCOTT, C. B., BANNER, R. E. & PROVENZA, F. D. 1996. Observations of sheep foraging in familiar and unfamiliar environments: familiarity with the environment influences diet selection. Applied Animal Behaviour Science 49:165171.CrossRefGoogle Scholar
SENAMHI (Servicio Nacional de Meteorología e Hidrología) 2006. Resumen climatológico 1988–1999 de la Estación Salinas, Provincia O'Connor, Departamento Tarija. Tarija, Bolivia. 9 pp.Google Scholar
SHRADER, A. M., BROWN, J. S., KERLEY, G. I. H. & KOTLER, B. P. 2008. Do free-ranging domestic goats show ‘landscapes of fear’? Patch use in response to habitat features and predator cues. Journal of Arid Environments 72:18111819.CrossRefGoogle Scholar
SURYAWANSHI, K. R., BHATNAGAR, Y. V. & MISHRA, C. 2010. Why should a grazer browse? Livestock impact on winter resource use by bharal (Pseudois nayaur). Oecologia 162:453462.CrossRefGoogle ScholarPubMed
VACAFLORESR., C. R., C., DEL CARPIOB., R. B., R., CALLAG., R. G., R. & MOLINAA., J. A., J. 2003. Entre territorios poblados y despoblados: la transhumancia ganadera en Tarija. Investigaciones Regionales Tarija. Fundación PIEB, La Paz, Bolivia. 172 pp.Google Scholar
VAN SOEST, P. J., ROBERTSON, J. B. & LEWIS, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74:35833597.CrossRefGoogle ScholarPubMed
VAN WIEREN, S. E. 1996. Do large herbivores select a diet that maximizes short-term energy intake rate? Forest Ecology and Management 88:149156.CrossRefGoogle Scholar
VILLALBA, J. J., PROVENZA, F. D. & SHAW, R. 2006. Sheep self-medicate when challenged with illness-inducing foods. Animal Behaviour 71:11311139.CrossRefGoogle Scholar
WALLIS DE VRIES, M. F. & SCHIPPERS, P. 1994. Foraging in a landscape mosaic: selection for energy and minerals in free-ranging cattle. Oecologia 100:107117.CrossRefGoogle Scholar
WESTOBY, M. 1974. An analysis of diet selection by large generalist herbivores. American Naturalist 108:290304.CrossRefGoogle Scholar