Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T14:14:53.829Z Has data issue: false hasContentIssue false

Studies on the Factors Affecting the Release of Organic Matter By Skeletonema Costatum (Greville) Cleve in Culture

Published online by Cambridge University Press:  11 May 2009

L. Ignatiades*
Affiliation:
Department of Botany, Westfield College, London, N.W.3
G. E. Fogg*
Affiliation:
Department of Botany, Westfield College, London, N.W.3
*
1Present address: Nuclear Research Centre ‘Democritos’, Aghia Paraskevi Attikis, Athens, Greece.
2Present address: Marine Science Laboratories, Menai Bridge, Anglesey.

Extract

A few studies on the excretion of organic matter by marine phytoplankton in culture have been reported (Guillard & Wangersky, 1958; Wangersky & Guillard, 1960; Stewart, 1963; Hellebust, 1965). Eppley & Sloan (1965) reported extensive excretion in Skeletonema costatum (Greville) Cleve cultures as they approached senescence and emphasized that excretion is inversely proportional to the physiological activity of cells. Hellebust (1965) demonstrated the release of high amounts (up to 38% of the carbon assimilated) of organic matter by Sk. costatum cells exposed to low light intensities. It is apparent that more knowledge is needed in order to define the intra- and extracellular factors affecting the excretion.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M., 1956. Excretion of organic compounds by Chlamydomonas. Archiv für Mikrobiologie, 24, 163–8.CrossRefGoogle ScholarPubMed
Becker, J. D., Dohler, G. & Egle, K., 1968. The effect of monochromatic light on the extra-cellular excretion of glycollate during the photosynthesis of Chlorella. Zeitschrift für Pflanzenphysiologie, 58, 212–21.Google Scholar
Calkins, V. P., 1943. Microdetermination of glycollic and oxalic acids. Industrial and Engineering Chemistry. Analytical edition, 15, 762–3.CrossRefGoogle Scholar
Chapman, G. & Rae, A. C., 1969. Excretion of photosynthate by a benthic diatom. Marine Biology, 3, 341–51.CrossRefGoogle Scholar
Eppley, R. W. & Sloan, P. R., 1965. Carbon balance experiments with marine phytoplankton. Journal of the Fisheries Research Board of Canada, 22, 1083–97.CrossRefGoogle Scholar
Fogg, G. E., 1958. Extracellular products of phytoplankton and the estimation of primary production. Rapport et proces-verbaux des reunions. Conseil permanent international pour Vexploration de la Mer, 144, 5660.Google Scholar
Fogg, G. E., 1959. Nitrogen nutrition and metabolic patterns in algae. Symposia of the Society for Experimental Biology, 13, 106–25.Google Scholar
Fogg, G. E., 1965. Algal Cultures and Phytoplankton Ecology, 126 pp. Madison, Wisconsin: University of Wisconsin Press.Google Scholar
Fogg, G. E., 1966. The extracellular products of algae. Oceanography Marine Biology. Annual Review, 4, 195212.Google Scholar
Fogg, G. E., 1971. Extracellular products of algae in freshwater. Archiv fiir Hydrobiologie Beihefte: Ergebnisse der Limnologie, 5, 125.Google Scholar
Fogg, G. E., Eagle, D. J. & Kinson, M. E., 1969. The occurrence of glycollic acid in natural waters. Verhandlungen der International Vereinigung für theoretische und angewandte Limnologie, 17 480–4.Google Scholar
Guillard, R. R. L., 1963. Organic sources of nitrogen for marine centric diatoms. In Symposium on Marine Microbiology (ed. Oppenheimer, C. H.), pp. 93103. Springfield, Illinois: C. C. Thomas.Google Scholar
Guillard, R. R. L. & Wangersky, P. J., 1958. The production of extracellular carbohydrates by some marine flagellates. Limnology and Oceanography, 3, 449–54.CrossRefGoogle Scholar
Hauschild, A. H. W., Nelson, C. D. & Krotkov, G., 1962. The effect of light quality on the products of photosynthesis in Chlorella vulgaris. Canadian Journal of Botany, 40, 179–89.CrossRefGoogle Scholar
Hellebust, J. A., 1965. Excretion of organic compounds by marine phytoplankton. Limnology and Oceanography, 10, 192206.CrossRefGoogle Scholar
Hellebust, J. A., 1967. Excretion of organic compounds by cultured and natural populations of marine phytoplankton. Estuaries (ed. Laugh, G. H.), pp. 361–6. Washington, D.C: AAAS.Google Scholar
Hellebust, J. A., 1970. Light (plants). In Marine Ecology (ed. O., Kinne), vol. 1, part 1, 125–58. London, New York, Sydney, Toronto: Wiley-Interscience.Google Scholar
Horne, A. J., Fogg, G. E. & Eagle, D. J., 1969. Studies in situ of primary production of an area of inshore Antarctic sea. Journal of the Marine Biological Association of the United Kingdom, 49, 393405.CrossRefGoogle Scholar
Humphrey, G. F., 1961. Phytoplankton pigments in the Pacific Ocean. In Primary Productivity Measurements (ed. M., Doty), pp. 121–41. U.S. Atomic Energy Commission, Division of Technical Information, TID-7633.Google Scholar
Huntsman, S. A., 1972. Organic excretion by Dunaliella tertiolecta. Journal of Phycology, 8, 5963.CrossRefGoogle Scholar
Ignatiades, L., 1973. Studies on the factors affecting the release of organic matter by Skeletonema costatum (Grev.) Cleve in field conditions. Journal of the Marine Biological Association of the United Kingdom, 53, 923–35.CrossRefGoogle Scholar
Jitts, R. H., Mcallister, C. D., Stephens, K. & Strickland, J. D. H., 1964. The cell division rates of some marine phytoplankton as a function of light and temperature. Journal of the Fisheries Research Board of Canada, 21, 139–57.CrossRefGoogle Scholar
JØrgensen, E. G., 1955. Variations in the silica content of diatoms. Physiologia plantarum, 8, 840–5.CrossRefGoogle Scholar
Lewin, R. A., 1956. Extracellular polysaccharides of green algae. Canadian Journal of Microbiology, 2, 665–72.CrossRefGoogle Scholar
Marker, A. F. H., 1965. Extracellular carbohydrate liberation in the flagellates Isochrysis galbana and Prymnesium parvum. Journal of the Marine Biological Association of the United Kingdom, 45, 755–72.CrossRefGoogle Scholar
Matsue, Y., 1954. On the culture of the marine diatom Skeletonema costatum (Grev.) Cleve. In Review of Fisheries Science in Japan. (In Japanese.) 41 pp. Tokyo: Japanese Society for the Advancement of Science.Google Scholar
Myklestad, S. & Haug, A., 1972. Production of carbohydrates by the marine diatom Chaetoceros affinis var. willei. (Gran) Hustedt. I. Effect of the concentration of nutrients in the culture medium. Journal of Experimental Marine Biology and Ecology, 9, 125–36.CrossRefGoogle Scholar
Mcallister, C. D., Parsons, T. R., Stephens, K. & Strickland, J. D. H., 1961. Measurements of primary production in coastal sea water using a large volume plastic sphere. Limnology and Oceanography, 6, 237–58.CrossRefGoogle Scholar
Mcallister, C. D., Shah, N. & Strickland, J. D. H., 1964. Marine phytoplankton photo-synthesis as a function of light intensity. Journal of the Fisheries Research Board of Canada, 21, 159–81.CrossRefGoogle Scholar
Nalewajko, C., Chowdhuri, N. & Fogg, G. E., 1963. Excretion of glycollic acid and the growth of planktonic Chlorella. In Studies on Microalgae and Photo synthetic Bacteria, pp. 177–83. Tokyo: Japanese Society of Plant Physiologists.Google Scholar
Paasche, E., 1964. A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxlevi. Physiologia plantarum, Suppl., HI, 82 pp.Google Scholar
Palmer, C. M. & Maloney, T. E., 1954. A new counting slide for nannoplankton. American Society for Limnology and Oceanography, Special Publication, 21, 17.Google Scholar
Passmann, J. M., Radin, N. S. & Cooper, J. A. D., 1956. Liquid scintillation techniques for measuringI4C activity. Analytical Chemistry, 28, 484–6.CrossRefGoogle Scholar
Patterson, J. & Parsons, T. R., 1963. Distribution of chlorophyll and degradation products in various marine samples. Limnology and Oceanography, 8, 355–6.CrossRefGoogle Scholar
Pirson, A., 1955. Functional aspects in mineral nutrition of green plants. Annual Review of Plant Physiology, 6, 71114.CrossRefGoogle Scholar
Pratt, R., 1943. Studies on Chlorella vulgaris. VII. Influence of the age of the culture on the rates of photosynthesis and respiration. American Journal of Botany, 30, 404–8.CrossRefGoogle Scholar
Ryther, J. H., Yentsch, C. S., Hulburt, E. M. & Vaccaro, R. F., 1958. The dynamics of a diatom bloom. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 115, 257–68.CrossRefGoogle Scholar
Saijo, Y. & Ichimura, S. E., 1961. A review of the recent development of techniques measuring primary production. In Primary Productivity Measurements (ed. M., Doty), pp. 91–6. U.S. Atomic Energy Commission, Division of Technical Information, TID-7633.Google Scholar
Samuel, S., Shah, N. M. & Fogg, G. E., 1971. Liberation of extracellular products of photo-synthesis by tropical phytoplankton. Journal of the Marine Biological Association of the United Kingdom, 51, 793–8.CrossRefGoogle Scholar
Schindler, D. W., 1966. A liquid scintillation method for measuring14C uptake in photosynthesis. Nature, London, 221, 844–5.CrossRefGoogle Scholar
Shah, N. M. & Fogg, G. E., 1973. The determination of glycollic acid in sea water. Journal of the Marine Biological Association of the United Kingdom, 53, 321–4.CrossRefGoogle Scholar
Steemann, Nielsen E., 1952. The use of radioactive14C for measuring production in the sea. Journal du Conseil, 18, 117–40.Google Scholar
Stewart, W. D. P., 1963. Liberation of extracellular nitrogen by two nitrogen fixing blue-green algae. Nature, London, 200, 1020–1.CrossRefGoogle Scholar
Strickland, J. D. H., 1960. Measuring the production of marine phytoplankton. Bulletin. Fisheries Research Board of Canada, no. 122, 172 pp.Google Scholar
Strickland, J. D. H., 1965. Production of organic matter in the primary stages of the marine food chain. In Chemical Oceanography (ed. Riley, J. P. and Skirrow, G.), 477610. New York: Academic Press.Google Scholar
Strickland, J. D. H. & Parsons, T. R., 1968. A practical handbook of water analysis. Bulletin. Fisheries Research Board of Canada, no. 167, 311 pp.Google Scholar
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H., 1942. The Oceans, 1087 pp. New York: Prentice Hall Inc.Google Scholar
Thomas, J. P., 1971. Release of dissolved organic matter from natural populations of phyto-plankton. Marine Biology, 11, 311–23.CrossRefGoogle Scholar
Tolbert, N. E., 1973. Photorespiration by algae. In Algal Physiology and Biochemistry (ed. Stewart, W. D. P.). Oxford: Blackwell Scientific Publications Ltd. (In the Press.)Google Scholar
Tolbert, N. E. & Zill, L. P., 1956. Excretion of glycollic acid by algae during photosynthesis. Journal of Biological Chemistry, 222, 895906.CrossRefGoogle ScholarPubMed
Wangersky, P. J. & Guillard, R. R. L., 1960. Low molecular weight organic base from the dino-flagellate Amphidinium carteri. Nature, London, 185, 689–90.CrossRefGoogle Scholar
Watt, W. D., 1966. Release of dissolved organic material from the cells of phytoplankton populations. Proceedings of the Royal Society B, 164, 521–51.Google Scholar
Watt, W. D. & Fogg, G. E., 1966. The kinetics of extracellular glycollate production by Chlorella pyrenoidosa. Journal of Experimental Botany, 17, 117–34.CrossRefGoogle Scholar
Williams, L. J. P., Berman, T. & Holm-Hansen, O., 1972. Potential sources of error in the measurement of low rates of planktonic photosynthesis and excretion. Nature, London, 236, 91–2.Google ScholarPubMed
Winokur, M., 1948. Ageing effect of Chlorella culture. American Journal of Botany, 36, 287–91.CrossRefGoogle Scholar
Yentsch, C. S. & Vaccaro, R. F., 1958. Phytoplankton nitrogen in the ocean. Limnology and Oceanography, 3, 443–8.CrossRefGoogle Scholar