Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-25T17:36:39.250Z Has data issue: false hasContentIssue false

Spatiotemporal dynamics of subarctic intertidal macrobenthos: going their own ways

Published online by Cambridge University Press:  18 March 2024

Andrey I. Azovsky*
Affiliation:
Department of General Ecology & Hydrobiology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia P.P. Shirshov Institute of Oceanology RAS, Moscow 117997, Russia
Margarita V. Chikina
Affiliation:
P.P. Shirshov Institute of Oceanology RAS, Moscow 117997, Russia
Mikhail Yu. Kolobov
Affiliation:
Department of General Ecology & Hydrobiology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
Andrey D. Naumov
Affiliation:
Zoological Institute RAS, St.-Petersburg 199034, Russia
Alexei A. Udalov
Affiliation:
P.P. Shirshov Institute of Oceanology RAS, Moscow 117997, Russia
*
Corresponding author: Andrey I. Azovsky; Email: aiazovsky@mail.ru

Abstract

Intertidal macrobenthos at the small Chernaya Bight (the White Sea) was surveyed six times during 1993–2018 in order to study spatiotemporal variability. Distributions of sediments and macrophytes were highly variable in both space and time, as were most macrofaunal community attributes. Biomass slightly increased with time, while no long-term trends were found in total abundance, diversity, or functional structure. All community attributes were patchily distributed across the beach, and their patterns were not spatially autocorrelated and poorly associated with sediment properties, but changed considerably from year to year. Temporal changes in the community composition were considerable but less substantial compared with the spatial variations. The overall dynamics of species structure did not show any regular trend-like pattern but formed quasicyclic trajectories in ordination space, with nondirectional, spatially noncorrelated fluctuations around some relatively stable state. Comparison with two other neighbouring intertidal sites, studied annually in 1987–2017, showed that macrofauna at every site had similar average biomasses and common dominant species; however, the communities maintained their specificity in structure and exhibited distinct types of dynamics. In particular, the communities demonstrated different long-term trends in total biomass and diversity and followed their own paths in dynamics, appearing as differently oriented interannual trajectories. Nine most abundant species revealed no significant among-site correlations in abundance, and only two bivalve species showed good intersite agreement in dynamics of biomass. We suggest that local benthic communities are largely influenced by site-specific environmental conditions, resulting in independent and even opposite patterns of dynamics in neighbouring localities.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M, Gorley, R and Clarke, K (2008) PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. Plymouth: PRIMER-E, 214 pp.Google Scholar
Arribas, L, Gutiérrez, J, Bagur, M, Soria, S, Penchaszadeh, P and Palomo, M (2019) Variation in aggregate descriptors of rocky shore communities: a test of synchrony across spatial scales. Marine Biology 166, 17.CrossRefGoogle Scholar
Azovsky, A (2019) Analysis of long-term biological data series: methodological problems and possible solutions. Biology Bulletin Reviews 9, 373384.CrossRefGoogle Scholar
Azovsky, A, Chertoprood, M, Kucheruk, N, Rybnikov, P and Sapozhnikov, F (2000) Fractal properties of spatial distribution of intertidal benthic communities. Marine Biology 136, 581590.CrossRefGoogle Scholar
Azovsky, A, Chertoprud, E and Garlitska, L (2022b) Community-level spatiotemporal synchrony: new metric and application to White Sea meiobenthic harpacticoids. Marine Ecology Progress Series 698, 5568.CrossRefGoogle Scholar
Azovsky, A, Chertoprud, E and Saburova, M (2022a) Small-scale spatiotemporal variability and distance–decay relationships in intertidal micro- and meiobenthic assemblages. Marine Ecology 43, e12704.CrossRefGoogle Scholar
Azovsky, A and Kokarev, V (2019) Stable but fragile: long-term dynamics of arctic benthic macrofauna in Baydaratskaya Bay (the Kara Sea). Polar Biology 42, 13071322.CrossRefGoogle Scholar
Azovsky, A, Naumov, A and Savchenko, O (2023) Long-term dynamics of subarctic intertidal macrofauna: common trends and the role of local environment. Estuaries and Coasts 46, 740756.CrossRefGoogle Scholar
Barnes, R and Ellwood, M (2012) The critical scale of small-scale spatial variation in ecological patterns and processes in intertidal macrobenthic seagrass assemblages. Estuarine, Coastal and Shelf Science 98, 119125.CrossRefGoogle Scholar
Burkovsky, I (2006) Marine biogeocoenology. In Organization of Communities and Ecosystems. Moscow: KMK Press, 285 pp.Google Scholar
Burkovsky, I, Udalov, A and Stoljarov, A (1997) The importance of juveniles in structuring a littoral macrobenthic community. Hydrobiologia 355, 19.CrossRefGoogle Scholar
Butman, C (1987) Larval settlement of soft-sediment invertebrates: the spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanography and Marine Biology 25, 113165.Google Scholar
Chertoprood, M and Azovsky, A (2000) Multiscale spatial heterogeneity of macrobenthos of the White Sea tidal zone. Journal of General Biology 61, 4763 [in Russian with an English summary].Google Scholar
Chikina, M, Spiridonov, V and Naumov, A (2020) Modiolus modiolus communities of Onega Bay, White Sea: how stable are they over time and space? Biology Bulletin of Russian Academy of Sciences 47, 10991114.CrossRefGoogle Scholar
Compton, T, Troost, T, Van Der Meer, J, Kraan, C, Honkoop, P, Rogers, D, Pearson, G, de Goeij, P, Bocher, P, Lavaleye, M and Leyrer, J (2008) Distributional overlap rather than habitat differentiation characterizes co-occurrence of bivalves in intertidal soft sediment systems. Marine Ecology Progress Series 373, 2535.CrossRefGoogle Scholar
Deb, J and Bailey, S (2023) Arctic marine ecosystems face increasing climate stress. Environmental Reviews 31, 403–451. doi: 10.1139/er-2022-0101CrossRefGoogle Scholar
Degraer, S, Verfaillie, E, Willems, W, Adriaens, E, Vincx, M and Van Lancker, V (2008) Habitat suitability modelling as a mapping tool for macrobenthic communities: an example from the Belgian part of the North Sea. Continental Shelf Research 28, 369379.CrossRefGoogle Scholar
Drozdov, V and Usov, N (2014) Large-scale variability of atmospheric circulation and loudspeaker of superficial water temperature of the White Sea. Scientific Notes of Russian State Hydrometeorological University 37, 155169 [in Russian with an English summary].Google Scholar
Filippova, N, Maximovich, N and Gerasimova, A (2015) On the practice of heterogeneity analysis of macrobenthic soft bottom communities (Kandalaksha Bay, White Sea). Biological Communications 2, 6177.Google Scholar
Fortin, M-J and Dale, M (2005) Spatial Analysis. A Guide for Ecologists. Cambridge: Cambridge University Press, 365 pp.CrossRefGoogle Scholar
Fromentin, J, Ibanez, F, Dauvin, J, Dewarumez, J and Elkaim, B (1997) Long-term changes of four macrobenthic assemblages from 1978 to 1992. Journal of the Marine Biological Association of the United Kingdom 77, 287310.CrossRefGoogle Scholar
Genelt-Yanovskiy, E, Aristov, D, Poloskin, A and Nazarova, S (2018) Trends and drivers of Macoma balthica L. dynamics in Kandalaksha Bay, the White Sea. Journal of the Marine Biological Association of the United Kingdom 98, 1324.CrossRefGoogle Scholar
Gerwing, T, Drolet, D, Hamilton, D and Barbeau, M (2016) Relative importance of biotic and abiotic forces on the composition and dynamics of a soft-sediment intertidal community. PLoS ONE 11, e0147098.CrossRefGoogle ScholarPubMed
Gotelli, N and Colwell, R (2011) Estimating species richness. In Magurran, A and McGill, B (eds), Frontiers in Measuring Biodiversity. Oxford: Oxford University Press, pp. 3954.Google Scholar
Hewitt, J and Thrush, S (2009) Reconciling the influence of global climate phenomena on macrofaunal temporal dynamics at a variety of spatial scales. Global Change Biology 15, 19111929.CrossRefGoogle Scholar
Jørgensen, L, Primicerio, R, Ingvaldsen, R, Fossheim, M, Strelkova, N, Thangstad, T, Manushin, I and Zakharov, D (2019) Impact of multiple stressors on sea bed fauna in a warming Arctic. Marine Ecology Progress Series 608, 112.CrossRefGoogle Scholar
Kendall, M and Widdicombe, S (1999) Small scale patterns in the structure of macrofaunal assemblages of shallow soft sediments. Journal of Experimental Marine Biology and Ecology 237, 127140.CrossRefGoogle Scholar
Khaitov, V, Artemyeva, A, Gornykh, A, Zhizhina, O and Yakovis, E (2007) The role of mussel patches in structuring of soft-bottom intertidal communities. 1. Structure of community associated with mussel patches on the White Sea littoral. Biological Communications 4, 312.Google Scholar
Knights, A, Firth, L and Russell, B (2017) Ecological responses to environmental change in marine systems. Journal of Experimental Marine Biology and Ecology 492, 36.CrossRefGoogle Scholar
Kokarev, V, Vedenin, A, Basin, A and Azovsky, A (2017) Taxonomic and functional patterns of macrobenthic communities on a High-Arctic shelf: a case study from the Laptev Sea. Journal of Sea Research 129, 6169.CrossRefGoogle Scholar
Koo, T and Li, M (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine 15, 155163.CrossRefGoogle ScholarPubMed
Kröncke, I, Neumann, H, Dippner, J, Holbrook, S, Lamy, T, Miller, R, Padedda, B, Pulina, S, Reed, D, Reinikainen, M and Satta, C (2019) Comparison of biological and ecological long-term trends related to northern hemisphere climate in different marine ecosystems. Nature Conservation 34, 311341.CrossRefGoogle Scholar
Kröncke, I, Reiss, H, Eggleton, J, Aldridge, J, Bergman, MJ, Cochrane, S, Craeymeersch, JA, Degraer, S, Desroy, N, Dewarumez, JM and Duineveld, GC (2011) Changes in North Sea macrofauna communities and species distribution between 1986 and 2000. Estuarine, Coastal and Shelf Science 94, 115.CrossRefGoogle Scholar
Maximovich, N and Guerassimova, A (2003) Life history characteristics of the clam Mya arenaria in the White Sea. Helgoland Marine Research 57, 9199.CrossRefGoogle Scholar
McLachlan, A and Dorvlo, A (2005) Global patterns in sandy beach macrobenthic communities. Journal of Coastal Research 21, 674687.CrossRefGoogle Scholar
McLachlan, A and Jaramillo, E (1995) Zonation on sandy beaches. Oceanography and Marine Biology: An Annual Review 33, 305335.Google Scholar
Naumov, A (2013) Long-term fluctuations of soft-bottom intertidal community structure affected by ice cover at two small sea bights in the Chupa Inlet (Kandalaksha Bay) of the White Sea. Hydrobiologia 706, 159173.CrossRefGoogle Scholar
Naumov, A (2019) The White Sea and its bottom ecosystems. Zoological Institute of Russian Academy of Sciences, St. Petersburg, 415 pp. [in Russian with an English summary].Google Scholar
Naumov, A, Savchenko, O, Aristov, D and Bijagov, K (2018) A decade of observations of intertidal benthic communities at the water area of Vitino specialized marine oil port (northern part of Kandalaksha Bay, White Sea): a methodological view. Biology Bulletin 45, 921936.CrossRefGoogle Scholar
Peterson, C (1991) Intertidal zonation of marine invertebrates in sand and mud. American Scientist 79, 236249.Google Scholar
Reise, K, Herre, E and Sturm, M (2008) Mudflat biota since the 1930s: change beyond return? Helgoland Marine Research 62, 1322.CrossRefGoogle Scholar
Savchenko, O and Naumov, A (2020) Thirty years of the biomass dynamics of several species in the intertidal communities of two small bights of Kandalaksha Bay, White Sea. Biology Bulletin 47, 10721087.CrossRefGoogle Scholar
Scheiner, S (2003) Six types of species-area curves. Global Ecology and Biogeography 12, 441447.CrossRefGoogle Scholar
Schückel, U and Kröncke, I (2013) Temporal changes in intertidal macrofauna communities over eight decades: a result of eutrophication and climate change. Estuarine, Coastal and Shelf Science 117, 210218.CrossRefGoogle Scholar
Soltwedel, T, Bauerfeind, E, Bergmann, M, Bracher, A, Budaeva, N, Busch, K, Cherkasheva, A, Fahl, K, Grzelak, K, Hasemann, C and Jacob, M (2016) Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary observations at the arctic marine LTER site HAUSGARTEN. Ecological Indicators 65, 89102.CrossRefGoogle Scholar
Solyanko, K, Spiridonov, V and Naumov, A (2011) Biomass, commonly occurring and dominant species of macrobenthos in Onega Bay (White Sea, Russia): data from three different decades. Marine Ecology 32, 3648.CrossRefGoogle Scholar
Toumi, C, De Cáceres, M, Grall, J, Boyé, A, Thiébaut, É, Maguer, M, Le Garrec, V, Broudin, C, Houbin, C and Gauthier, O (2023) Long-term coastal macrobenthic community trajectory analysis reveals habitat-dependent stability patterns. Ecography, e06489. doi: 10.1111/ecog.06489CrossRefGoogle Scholar
Varfolomeeva, M and Naumov, A (2013) Long-term temporal and spatial variation of macrobenthos in the intertidal soft-bottom flats of two small bights (Chupa Inlet, Kandalaksha Bay, White Sea). Hydrobiologia 706, 175189.CrossRefGoogle Scholar
Supplementary material: File

Azovsky et al. supplementary material 1

Azovsky et al. supplementary material
Download Azovsky et al. supplementary material 1(File)
File 65 KB
Supplementary material: File

Azovsky et al. supplementary material 2

Azovsky et al. supplementary material
Download Azovsky et al. supplementary material 2(File)
File 445 KB
Supplementary material: File

Azovsky et al. supplementary material 3

Azovsky et al. supplementary material
Download Azovsky et al. supplementary material 3(File)
File 314.6 KB
Supplementary material: File

Azovsky et al. supplementary material 4

Azovsky et al. supplementary material
Download Azovsky et al. supplementary material 4(File)
File 13.2 KB
Supplementary material: File

Azovsky et al. supplementary material 5

Azovsky et al. supplementary material
Download Azovsky et al. supplementary material 5(File)
File 14.3 KB
Supplementary material: File

Azovsky et al. supplementary material 6

Azovsky et al. supplementary material
Download Azovsky et al. supplementary material 6(File)
File 18.7 KB