Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T00:23:12.928Z Has data issue: false hasContentIssue false

Spatial structuring of submerged aquatic vegetation in an estuarine habitat of the Gulf of Mexico

Published online by Cambridge University Press:  14 June 2012

Aretha Moriana Burgos-León
Affiliation:
Centro de Investigación y de Estudios Avanzados, Unidad Mérida, AP 73 Cordemex, 97310 Mérida, Yucatán, México
David Valdés
Affiliation:
Centro de Investigación y de Estudios Avanzados, Unidad Mérida, AP 73 Cordemex, 97310 Mérida, Yucatán, México
Ma. Eugenia Vega
Affiliation:
Centro de Investigación y de Estudios Avanzados, Unidad Mérida, AP 73 Cordemex, 97310 Mérida, Yucatán, México
Omar Defeo*
Affiliation:
UNDECIMAR, Facultad de Ciencias, Iguá 4225, Montevideo, Uruguay
*
Correspondence should be addressed to: O. Defeo, UNDECIMAR, Facultad de Ciencias, Iguá 4225, Montevideo, Uruguay email: odefeo@fcien.edu.uy

Abstract

Seasonal changes in spatial structure of biomass of submerged aquatic vegetation (SAV) and environmental variables were evaluated in Celestun Lagoon, an estuarine habitat in Mexico. Geostatistical techniques were used to evaluate spatial autocorrelation and to predict the spatial distribution by kriging. The relative contribution of 11 environmental variables in explaining the spatial structure of biomass of SAV was evaluated by canonical correspondence analysis. Spatial partitioning between species of SAV was evident: the seagrasses Halodule wrightii and Ruppia maritima dominated the seaward and central zones of the lagoon, respectively, whereas the green alga Chara fibrosa was constrained to the inner zone. The spatial structure and seasonal variability of SAV biomass were best explained by organic carbon in the sediments, salinity and total suspended solids in the water column. Analysis at different spatial scales allowed identifying the importance of spatial structure in biotic and abiotic variables of this estuarine habitat.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, V.D. (1990) Water and wastewater examination manual. Michigan: Lewis Publisher Inc.Google Scholar
Arceo-Carranza, D., Vega-Cendejas, M.E., Montero-Muñoz, J.L. and Hernández de Santillana, M.J. (2010) Influencia del tipo de hábitat en las asociaciones nictimerales de peces en una laguna costera tropical. Revista Mexicana de Biodiversidad. Universidad Nacional Autónoma de México 81, 823837.Google Scholar
Bach, S.D., Thayer, G.W. and LaCroix, M.W. (1986) Export of detritus from eelgrass (Zostera marina) beds near Beaufort, North Carolina, USA. Marine Ecology Progress Series 28, 265278.CrossRefGoogle Scholar
Buchanan, J.B. (1984) Sediment analysis. In Holme, N.A. and Mcintyre, A.D. (eds) Methods for study of marine benthos. London: Blackwell Scientific Publications, pp. 4165.Google Scholar
Chávez, E.A., Garduño, M. and Arreguin-Sanchez, F. (1993) Trophic dynamic structure of Celestun Lagoon, Southern Gulf of México. In Christensen V. and Pauly D. (eds) Trophic models of aquatic ecosystems. ICLARM Conference Proceedings 26, pp. 186–192.Google Scholar
Contreras, E.F., Castañeda, O., Torres, R. and Gutiérrez, F. (1996) Nutrientes en 39 lagunas costeras mexicanas. Revista de Biología Tropical 44, 421429.Google Scholar
Cressie, N. (1991) Statistics for spatial data. New York: John Wiley & Sons.Google Scholar
Cyrus, D.P. and Blaber, S.J.M. (1987) The influence of turbidity on juvenile marine fishes in estuaries. Part 1. Field studies at St Lucia on the southeastern coast of Africa. Journal of Experimental Marine Biology and Ecology 109, 5370.CrossRefGoogle Scholar
del Pozo, R., Fernández-Aláez, C. and Fernández-Aláez, M. (2010) An assessment of macrophyte community metrics in the determination of the ecological condition and total phosphorus concentration of Mediterranean ponds. Aquatic Botany 92, 5562.CrossRefGoogle Scholar
Dent, J.B. and Blackie, M.J. (1979) Systems simulation in agriculture. London: Applied Science Publishers.CrossRefGoogle Scholar
Dodkins, I., Rippey, B. and Hale, P. (2005) An application of canonical correspondence analysis for developing ecological quality assessment metrics for river macrophytes. Freshwater Biology 50, 891904.CrossRefGoogle Scholar
Herrera-Silveira, J.A. (1994) Spatial heterogeneity and seasonal patterns in a tropical coastal lagoon. Journal of Coastal Research 10, 738746.Google Scholar
Herrera-Silveira, J.A. (2006) Lagunas costeras de Yucatán (SE, México): investigación, diagnóstico y Manejo. ECOTRÓPICOS Sociedad Venezolana de Ecología 19, 94108.Google Scholar
Istvánovics, V., Honti, M., Kóvacs, A. and Osztoics, A. (2008) Distribution of submerged macrophytes along environmental gradients in large, shallow Lake Balaton (Hungry). Aquatic Botany 88, 317330.CrossRefGoogle Scholar
Kemp, W.M., Batuik, R., Bartleson, R., Bergstrom, P., Carter, V., Gallegos, Ch.L., Hunley, W., Karrh, L., Korch, E.W., Landwehr, J.M., Moore, K.A., Murray, L., Naylor, M., Rybicki, N.B., Stevenson, J.C. and Wilcox, D.J. (2004) Habitat requirements for submerged aquatic vegetation in Chesapeake Bay: water quality, light regime, and physical–chemical factors. Estuaries 27, 363377.CrossRefGoogle Scholar
Kenworthy, W.J., Wyllie-Echeverria, S., Coles, R.G., Pergent, G. and Pergent-Martini, Ch. (2006) Seagrass conservation biology: an interdisciplinary science for protection of the seagrass biome. In Larkum, A.W.D., Orth, R.J. and Duarte, C.M. (eds) Seagrass biology, ecology and conservation. Dordrecht, The Netherlands: Springer, pp. 595623.Google Scholar
Kimmel, D.G., Miller, W.D., Harding, L.W. Jr, Houde, E.D. and Roman, M.R. (2009) Estuarine ecosystem response captured using a synoptic climatology. Estuaries and Coasts 32, 403409.CrossRefGoogle Scholar
Koch, E.W. (2001) Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24, 117.CrossRefGoogle Scholar
Kristensen, E., Bouillon, S., Dittimar, T. and Marchand, C. (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany 89, 201219.CrossRefGoogle Scholar
Larkum, A.W.D., Orth, R.J. and Duarte, C.M. (eds) (2006) Seagrasses: biology, ecology and conservation. Dordrecht, The Netherlands: Springer.Google Scholar
Lazar, A.C. and Dawes, C. (1991) A seasonal study of the seagrass Ruppia maritima L. in Tampa Bay, Florida. Organic constituents and tolerances to salinity and temperature. Botanica Marina 34, 265269.CrossRefGoogle Scholar
Lehman, P.W. (2004) The influence of climate on mechanistic pathways that affect lower food web production in Northern San Francisco Bay Estuary. Estuaries 27, 311324.CrossRefGoogle Scholar
Littler, D.S. and Littler, M.M. (2000) Caribbean reef plants: an identification guide to the reef plants of the Caribbean, Bahamas, Florida, and Gulf of Mexico. 2nd edition.Washington, DC: OffShore Graphics Inc.Google Scholar
Matheron, G. (1963) Principles of geostatistics. Economic Geology 58, 12261266.CrossRefGoogle Scholar
Matheron, G. (1965) La théorie des variables régionalisées et ses applications. Paris: Masson et Cie, Éditeurs.Google Scholar
Orth, R.J., Luckenbach, M.L., Marion, S.R., Moore, K.A. and Wilcox, D.J. (2006) Seagrass recovery in the Delmara Coastal Bays, USA. Aquatic Botany 84, 2636.CrossRefGoogle Scholar
Parsons, T.R., Maita, Y. and Lalli, C.M. (1984) A manual of chemical and biological methods for seawater analysis. Oxford: Pergamon Press.Google Scholar
Pérez-Castañeda, R. and Defeo, O. (2004) Spatial distribution and structure along ecological gradients: peneid shrimps in a tropical estuarine habitat of Mexico. Marine Ecology Progress Series 273, 173185.CrossRefGoogle Scholar
Preen, A.R., Lee Long, W.J. and Coles, R.G. (1995) Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia. Aquatic Botany 52, 317.CrossRefGoogle Scholar
Quammen, M.L. and Onuf, C.P. (1993) Laguna Madre: seagrass changes continue decades after salinity reduction. Estuaries 16, 302310.CrossRefGoogle Scholar
Raposa, K.B. and Oviatt, C.A. (2000) The influence of contiguous shoreline type, distance from shore, and vegetation biomass on nekton community structure in eelgrass beds. Estuaries 23, 4665.CrossRefGoogle Scholar
Ribeiro, J., Bentes, L., Coelho, R., Gonçalves, J.M.S., Lino, P.G., Monteiro, P. and Erzini, K. (2006) Seasonal, tidal and diurnal changes in fish assemblages in the Ria Formosa lagoon (Portugal). Estuarine, Coastal and Shelf Science 67, 461471.CrossRefGoogle Scholar
Robertson, G.P. (1987) Geostatistics in ecology: interpolating with known variance. Ecology 68, 744748.CrossRefGoogle Scholar
Robertson, G.P. (2000) GS + : geostatistics for the environmental sciences. Plainwell, MI: Gamma Design Software.Google Scholar
Rossi, R., Mulla, D.J., Journel, A.G. and Franz, E.H. (1992) Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs 62, 277314.CrossRefGoogle Scholar
Short, F.T. and McRoy, C.P. (1984) Nitrogen uptake by leaves and roots of the seagrasses Zostera marina L. Botanica Marina 27, 547555.CrossRefGoogle Scholar
Short, F.T., Carruthers, T., Dennison, W. and Waycott, M. (2007) Global seagrass distribution and diversity: a bioregional model. Journal of Experimental Marine Biology and Ecology 350, 320.CrossRefGoogle Scholar
Soetaert, K. and Middelburg, J.J. (2009) Modeling eutrophication and oligotrophication of shallow-water marine systems: the importance of sediments under stratified and well-mixed conditions. Hydrobiologia 629, 239254.CrossRefGoogle Scholar
Stirling, H.P. (ed.) (1985) Chemical and biological methods of water analysis for aquaculturalists. Stirling, Scotland: Institute of Aquaculture, University of Stirling.Google Scholar
Strickland, J.D.H. and Parsons, T.R. (1972) A practical handbook of seawater analysis. Bulletin 167, Fisheries Research Bord of Canada.Google Scholar
Ter Braak, C.J.F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 11671179.CrossRefGoogle Scholar
Ter Braak, C.J.F. and Smilauer, P. (2002) CANOCO reference manual and CanoDraw for Windows user guide: software for canonical community ordination (version 4.5). Ithaca, NY: Microcomputer Power.Google Scholar
Thomsen, M.S., Wernberg, T., Engelen, A.H., Tuya, F., Vanderklift, M.A., Holmer, M., McGlathery, K.J., Arenas, F., Kotta, J. and Silliman, B.R. (2012) A meta-analysis of seaweed impacts on seagrasses: generalities and knowledge gaps. PLoS ONE 7, e28595.CrossRefGoogle ScholarPubMed
Touchette, B.W. (2007) Seagrass–salinity interactions: physiological mechanisms used by submersed marine angiosperms for a life at sea. Journal of Experimental Marine Biology and Ecology 350, 194215.CrossRefGoogle Scholar
Travers, M.J. and Potter, I.C. (2002) Factors influencing the characteristics of fish assemblages in a large subtropical marine embayment. Journal of Fish Biology 61, 764784.CrossRefGoogle Scholar
Wagner, H.H. (2003) Spatial covariance in plant communities: integrating ordination, geostatistics, and variance testing. Ecology 84, 10451057.CrossRefGoogle Scholar
Zaldívar, J.A., Herrera-Silveira, J., Coronado-Molina, C. and Parra, D.A. (2004) Estructura y productividad de los manglares en la reserva de la biosfera Ría Celestún, Yucatán, México. Madera y Bosques Número especial 2, 2535.Google Scholar
Zupo, V., Mazella, L., Buia, M.C., Gambi, M.C., Lorenti, M., Scipione, M.B. and Cancemi, G. (2006) A small-scale analysis of the spatial structure of a Posidonia oceanica meadow off the Island of Ischia (Gulf of Naples, Italy): relationship with seafloor morphology. Aquatic Botany 84, 101109.CrossRefGoogle Scholar