Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T11:04:42.533Z Has data issue: false hasContentIssue false

Spatial genetic structure and demographic inference of the Patagonian squid Doryteuthis gahi in the south-eastern Pacific Ocean

Published online by Cambridge University Press:  19 April 2011

Christian M. Ibáñez*
Affiliation:
Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile
Juan Argüelles
Affiliation:
Unidad de Invertebrados Marinos, Instituto del Mar del Perú, Esquina Gamarra y General Valle s/n, Chucuito, Callao, Perú
Carmen Yamashiro
Affiliation:
Unidad de Invertebrados Marinos, Instituto del Mar del Perú, Esquina Gamarra y General Valle s/n, Chucuito, Callao, Perú
Luis Adasme
Affiliation:
Instituto de Fomento Pesquero, Blanco 839, Valparaíso, Chile
Renato Céspedes
Affiliation:
Instituto de Fomento Pesquero, Blanco 839, Valparaíso, Chile
Elie Poulin
Affiliation:
Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile
*
Correspondence should be addressed to: C.M. Ibáñez, Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile email: ibanez.christian@gmail.com

Abstract

Doryteuthis gahi is a small squid species that has a wide distribution in South America. This species is characterized by coastal and benthic spawning, and its ontogenetic vertical migration is associated with upwelling zones, features that may restrict its dispersal potential. It has also been proposed that populations of these neritic squid are structured by the influence of local processes which act as barriers to gene flow. Based on this background, we evaluate the geographical structure of genetic diversity in D. gahi along its distribution in the south-eastern Pacific Ocean. We used 116 COI mtDNA sequences of squid collected from different sites in Peru and Chile and calculated genetic diversity, the population structure index Fst, and performed analysis of spatial molecular variance and exact tests to detect differences among localities. To infer demographic history we carried out tests of neutrality and Bayesian skyline analysis. Although there was little molecular divergence between Peru and Chile, we detected a significant genetic differentiation of D. gahi along its geographical distribution. Squid from Chile showed higher genetic diversity than those of Peru and the results of the demographic inference analysis suggest that the population of Peru is experiencing or experienced in the recent past demographic expansion, a pattern that was not found in Chile. We think that the current genetic patterns are consequences of northward migrations in the glaciation periods and posterior re-colonization of southern Chile in the deglacial period.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aljanabi, S.M. and Martinez, I. (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25, 46924693.CrossRefGoogle ScholarPubMed
Aoki, M., Imai, H., Naruse, T. and Ikeda, Y. (2008) Low genetic diversity of oval squid, Sepioteuthis cf. lessoniana (Cephalopoda: Loliginidae), in Japanese waters inferred from a mitochondrial DNA non-coding region. Pacific Science 62, 403411.CrossRefGoogle Scholar
Arkhipkin, A.I., Laptikhovsky, V.V. and Middleton, D.A.J. (2000) Adaptations for cold water spawning in loliginid squid: Loligo gahi in Falkland waters. Journal of Molluscan Studies 66, 551564.CrossRefGoogle Scholar
Arkhipkin, A.I., Grzebielec, R., Sirota, A.M., Remeslo, A.V., Polishchuk, I.A. and Middleton, D.A.J. (2004) The influence of seasonal environmental changes on ontogenetic migrations of the squid Loligo gahi on the Falkland shelf. Fisheries Oceanography 13, 19.CrossRefGoogle Scholar
Avise, J.C. (2000) Phylogeography. Cambridge, MA; Harvard University Press.CrossRefGoogle ScholarPubMed
Bartol, I.K., Krueger, P.S., Thompson, J.T. and Stewart, W.J. (2008) Swimming dynamics and propulsive efficiency of squids throughout ontogeny. Integrative and Comparative Biology 48, 720733.CrossRefGoogle ScholarPubMed
Boyle, P.R. and Radhouse, P.G. (2005) Cephalopods: ecology and fisheries. Oxford: Blackwell Science Ltd., 438 pp.CrossRefGoogle Scholar
Brattström, H. and Johanssen, A. (1983) Ecological and regional zoogeography of the marine benthic fauna of Chile. Sarsia 68, 289339.CrossRefGoogle Scholar
Brierley, A.S., Thorpe, J.P., Pierce, G.J., Clarke, M.R. and Boyle, P.R. (1995) Genetic variation in the neritic squid Loligo forbesi (Myopsida: Loliginidae) in the northeast Atlantic Ocean. Marine Biology 122, 7986.CrossRefGoogle Scholar
Buresch, K.C., Gerlach, G. and Hanlon, R.T. (2006) Multiple stocks of longfin squid Loligo pealeii in the NW Atlantic: stocks segregate inshore in summer, but aggregate offshore in winter. Marine Ecology Progress Series 310, 263270.CrossRefGoogle Scholar
Campos, E.J.D., Miller, J.L., Müller, T.J. and Peterson, R.G. (1995) Physical oceanography of the southwest Atlantic Ocean. Oceanography 8, 8791.CrossRefGoogle Scholar
Camus, P.A. (2001) Biogeografía marina de Chile continental. Revista Chilena de Historia Natural 74, 587617.CrossRefGoogle Scholar
Camus, P.A. (2008) Understanding biological impacts of ENSO on the eastern Pacific: an evolving scenario. International Journal of Environment and Health 2, 519.CrossRefGoogle Scholar
Cane, M.A. (2005) The evolution of El Niño, past and future. Earth and Planetary Science Letters 230, 227240.CrossRefGoogle Scholar
Cárdenas, L., Castilla, J.C. and Viard, F. (2009) A phylogeographical analysis across three biogeographical provinces of the south-eastern Pacific: the case of the marine gastropod Concholepas concholepas. Journal of Biogeography 36, 969981.CrossRefGoogle Scholar
Carvalho, G.R. and Loney, K.H. (1989) Biochemical genetic studies on the Patagonian squid, Loligo gahi d'Orbigny. I. Electrophoretic survey of genetic variability. Journal of Experimental Marine Biology and Ecology 126, 231241.CrossRefGoogle Scholar
Carvalho, G.R. and Pitcher, T.J. (1989) Biochemical genetic studies on the Patagonian squid Loligo gahi d'Orbigny. II. Population structure in Falkland waters using isozymes, morphometrics and life history data. Journal of Experimental Marine Biology and Ecology 126, 243258.CrossRefGoogle Scholar
Chavez, F.P., Bertrand, A., Guevara-Carrasco, R., Soler, P. and Csirke, J. (2008) The northern Humboldt Current System: brief history, present status and a view towards the future. Progress in Oceanography 79, 95105.CrossRefGoogle Scholar
Cinti, A., Barón, P.J. and Rivas, A.L. (2004) The effects of environmental factors on the embryonic survival of the Patagonian squid Loligo gahi. Journal of Experimental Marine Biology and Ecology 313, 225240.CrossRefGoogle Scholar
Dawson, M.N., Waples, R.S. and Bernardi, G. (2006) Phylogeography. In Allen, L.G.D., Pondella, D.J. and Horn, M.H. (eds) The ecology of marine fishes: California and adjacent waters. Berkeley, CA: University of California Press, pp. 2654.Google Scholar
Drummond, A.J. and Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.CrossRefGoogle ScholarPubMed
Drummond, A.J., Rambaut, A., Shapiro, B. and Pybus, O.G. (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution 22, 11851192.CrossRefGoogle ScholarPubMed
Dupanloup, I., Schneider, S. and Excoffier, L. (2002) A simulated annealing approach to define the genetic structure of populations. Molecular Ecology 11, 25712581.CrossRefGoogle ScholarPubMed
Excoffier, L., Laval, G. and Schneider, S. (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 4750.Google Scholar
Filatov, D.A. (2002) ProSeq: a software for preparation and evolutionary analysis of DNA sequence data sets. Molecular Ecology Notes 2, 621624.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Fu, Y.X. (1995) Statistical properties of segregating sites. Theoretical Population Biology 48, 172197.CrossRefGoogle ScholarPubMed
González, F., Otero, J., Guerra, A., Prego, R., Rocha, F.J. and Dale, W. (2005) Distribution of common octopus and common squid paralarvae in a wind-driven upwelling area (Ria of Vigo, northwestern Spain). Journal of Plankton Research 27, 271277.CrossRefGoogle Scholar
Grant, W.S. and Bowen, B.W. (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity 89, 415426.CrossRefGoogle Scholar
Hatfield, E.M.C. (1996) Towards resolving multiple recruitment into loliginid fisheries: Loligo gahi in the Falkland Islands fishery. ICES Journal of Marine Science 53, 565575.CrossRefGoogle Scholar
Hatfield, E.M.C., Rodhouse, P.G. and Porebski, J. (1990) Demography and distribution of the Patagonian squid (Loligo gahi, d'Orbigny) during the austral winter. Journal du Conseil 46, 306312.CrossRefGoogle Scholar
Haye, P.A., Salinas, P., Acuña, E. and Poulin, E. (2010) Heterochronic phenotypic plasticity with lack of genetic differentiation in the southeastern Pacific squat lobster Pleuroncodes monodon. Evolution and Development 12, 627633.CrossRefGoogle ScholarPubMed
Herke, S.W. and Foltz, D.W. (2002) Phylogeography of two squid (Loligo pealei and L. plei) in the Gulf of Mexico and northwestern Atlantic Ocean. Marine Biology 140, 103115.Google Scholar
Hewitt, G.M. (2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society B 359, 183195.CrossRefGoogle ScholarPubMed
Ibáñez, C.M., Camus, P.A. and Rocha, F. (2009) Diversity and distribution of cephalopod species of the coast off Chile. Marine Biology Research 5, 374384.CrossRefGoogle Scholar
Lancellotti, D.A. and Vásquez, J.A. (1999) Biogeographical patterns of benthic macroinvertebrates in southeastern Pacific littoral. Journal of Biogeography 26, 10011006.CrossRefGoogle Scholar
Laptikhovsky, V. (2008) New data on spawning and bathymetric distribution of the Patagonian squid, Loligo gahi. Marine Biodiversity Records 1, e50.CrossRefGoogle Scholar
Larmuseau, M.H.D., Van Houdt, J.K.J., Guelinckx, J., Hellemans, B. and Volckaert, F.A.M. (2009) Distributional and demographic consequences of Plesitocene climate fluctuations for a marine demersal fish in the north-eastern Atlantic. Journal of Biogeography 36, 11381151.CrossRefGoogle Scholar
Lecomte, F., Grant, W.S., Dodson, J.J., Rodríguez-Sánchez, R. and Bowen, B.W. (2004) Living with uncertainty: genetic imprints of climate shifts in East Pacific anchovy (Engraulis mordax) and sardine (Sardinops sagax). Molecular Ecology 13, 21692182.CrossRefGoogle ScholarPubMed
Martínez, E.A., Cárdenas, L. and Pinto, R. (2003) Recovery and genetic diversity of the intertidal kelp Lessonia nigrescens 20 years after El Niño 1982–1983. Journal of Phycology 39, 504508.CrossRefGoogle Scholar
Montecino, V. and Lange, C.B. (2009) The Humboldt Current System: ecosystem components and processes, fisheries, and sediment studies. Progress in Oceanography 83, 6579.CrossRefGoogle Scholar
Moreno, A., Dos Santos, A., Piatkowski, U., Santos, A.M.P. and Cabral, H. (2009) Distribution of cephalopod paralarvae in relation to the regional oceanography of western Iberia. Journal of Plankton Research 31, 7391.CrossRefGoogle Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T. and Anderson, D.M. (2002) Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162165.CrossRefGoogle ScholarPubMed
Oliveira, L.R., Meyer, D., Hoffman, J., Majluf, P. and Morgante, J. (2009) Evidence of a genetic bottleneck in an El Niño affected population of South American fur seals, Arctocephalus australis. Journal of the Marine Biological Association of the United Kingdom 89, 17171725.CrossRefGoogle Scholar
Posada, D. (2008) jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution 25, 12531256.CrossRefGoogle ScholarPubMed
Rambaut, A. and Drummond, A.J. (2009a) LogCombier v1.5.3. Available from http://beast.bio.ed.ac.uk/LogCombiner (accessed 11 June 2009).Google Scholar
Rambaut, A. and Drummond, A.J. (2009b) Tracer v1.5. Available from http://tree.bio.ed.ac.uk/software/tracer (accessed 11 June 2009).Google Scholar
Reichow, D. and Smith, R.J. (2001) Microsatellites reveal high levels of gene flow among populations of the California squid Loligo opalescens. Molecular Ecology 10, 11011109.CrossRefGoogle ScholarPubMed
Rocha, F., Guerra, A., Prego, R. and Piatkowski, U. (1999) Cephalopod paralarvae and upwelling conditions off Galician waters (NW Spain). Journal of Plankton Research 21, 2133.CrossRefGoogle Scholar
Semmens, J.M., Pecl, G.T., Gillanders, B.M., Waluda, C.M., Shea, E.K., Jouffre, D., Ichii, T., Zumholz, K., Katugin, O.N., Leporati, S.C. and Shaw, P.W. (2007) Approaches to resolving cephalopod movement and migration patterns. Reviews in Fish Biology and Fisheries 17, 401423.CrossRefGoogle Scholar
Shaw, P.W., Pierce, G. and Boyle, P.R. (1999) Subtle population structuring within a highly vagile marine invertebrate, the veined squid Loligo forbesi (Cephalopoda: Loliginidae) uncovered using microsatellite DNA markers. Molecular Ecology 8, 407417.CrossRefGoogle Scholar
Shaw, P.W., Adcock, G.J., Burnett, W.J., Carvalho, G.R. and Arkhipkin, A.I. (2004) Temporally distinct spawning cohorts and geographically distinct spawning aggregations within the Patagonian squid Loligo gahi do not represent genetically differentiated sub-populations. Marine Biology 144, 961970.Google Scholar
Slatkin, M. (1994) An exact test for neutrality based on the Ewen's sampling distribution. Genetics Research 64, 7174.CrossRefGoogle Scholar
Suchard, M.A., Weiss, R.E. and Sinsheimer, J.S. (2001) Bayesian selection of continuous-time Markov chain evolutionary models. Molecular Biology and Evolution 18, 10011013.CrossRefGoogle ScholarPubMed
Tajima, F. (1989) Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123, 585595.CrossRefGoogle Scholar
Tellier, F., Meynard, A.P., Correa, J.A., Faugeron, S. and Valero, M. (2009) Phylogeographic analyses of the 30°S south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: vicariance or parapatry? Molecular Phylogenetics and Evolution 53, 679693.CrossRefGoogle ScholarPubMed
Thiel, M., Macaya, E., Acuña, E., Arntz, W., Bastias, H., Brokordt, K., Camus, P., Castilla, J.C., Castro, L.R., Cortés, M., Dumont, C.P., Escribano, R., Fernández, M., Lancelloti, D., Gajardo, J.A., Gaymer, C.F., Gomez, I., González, A.E., González, H.E., Haye, P.A., Illanes, J.E., Iriarte, J.L., Luna-Jorquera, G., Luxoro, C., Manríquez, P.H., Marín, V., Muñoz, P., Navarrete, S.A., Pérez, E., Poulin, E., Sellanes, J., Sepúlveda, H.H., Stotz, W., Tala, F., Thomas, A., Vargas, C.A., Vásquez, J.A. and Vega, A. (2007) The Humboldt Current System of northern and central Chile. Oceanographic processes, ecological interactions and socioeconomic feedback. Oceanography and Marine Biology: an Annual Review 45, 195344.Google Scholar
Vega, M.A., Rocha, F.J., Guerra, A. and Osorio, C. (2002) Morphological differences between the Patagonian squid Loligo gahi populations from the Pacific and Atlantic Oceans. Bulletin of Marine Science 71, 903913.Google Scholar
Villegas, P. (2001) Growth, life cycle and fishery biology of Loligo gahi (d'Orbigny, 1835) off the Peruvian coast. Fisheries Research 54, 123131.CrossRefGoogle Scholar