Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-28T07:20:14.899Z Has data issue: false hasContentIssue false

Sound production and stridulatory structures in hermit crabs of the genus Trizopagurus

Published online by Cambridge University Press:  11 May 2009

Laurence H. Field
Affiliation:
Department of Zoology, University of Canterbury, Christchurch 1, New Zealand
Athale Evans
Affiliation:
Department of Zoology, University of Melbourne, Parkville, Victoria 3052, Australia
David L. Macmillan
Affiliation:
Department of Zoology, University of Melbourne, Parkville, Victoria 3052, Australia

Abstract

The cheliped stridulatory structures are described for Trizopagurus strigimanus, T. melitai, T. tenebrarum and T. strigatus.

Sound in T. strigimanus is produced during reciprocal flexion and extension of the carpo-propodite and mero-carpopodite joints of tightly apposed chelae. These underwater sounds occur as syllables, each of which is composed of damped pulses with a repetition rate of 36–303/s and a within-pulse frequency of 6–8 kHz. The maximum sound pressure level (peak to peak) 15 cm from the source was 24 dB re: 1 Pa.

The gastropod shells inhabited by T. strigimanus had a weak effect (5% pressure difference) on directional radiation of sound in the near field (5 cm) and no effect beyond 20 cm from the crabs.

Cavity resonance of the shells was predicted from a mathematical model, but only appeared important at a fundamental frequency of about 4 kHz, when tested in animals partially removed from their shells. A more significant effect was low-frequency vibration (100–300 Hz) imparted to the shells through direct contact by the hermit crab inhabitants.

Behavioural experiments suggested that the function of T. strigimanus stridulation is defensive, particularly against conspecific aggressors. This may reduce intraspecific competition for shells in Trizopagurus.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A., 1965. Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables. New York: Dover.Google Scholar
Athenaeus, , Third Century A.D. Le Banquet Des Savants, translated by Le Febure de Villebrune. Paris: Lamy.Google Scholar
Bach, C., Hazlett, B. A. & Rittschoff, D., 1976. Effects of interspecific competition on fitness of the hermit crab, Clibanarius tricolor. Ecology, 57, 579586.CrossRefGoogle Scholar
Chichibu, S., Tani, Y. & Tsukada, M., 1978. Sinusoidal mechanical stimulation and the frequency characteristics of the crayfish setal neurons. Acta medica Kinki University, 3, 191201.Google Scholar
Dumortier, B., 1963. Morphology of sound emission apparatus in Arthropoda. In Acoustic Behaviour of Animals (ed. Busnel, R. G.), pp. 277345. Amsterdam: Elsevier.Google Scholar
Forest, J., 1952. Contributions à la révision des Crustacés Paguridae. I. Le genre Trizopagurus. Memoirés du Muséum nationale d'histoire naturelle (sér. A), 5 (1), 140.Google Scholar
Hazlett, B. A., 1966 a. Social behavior of the Paguridae and the Diogenidae of Curaçao. Studies of the Fauna of Curaçao and other Caribbean Islands, 23, 143 pp.Google Scholar
Hazlett, B. A., 1966 b. Factors affecting the aggressive behaviour of the hermit crab Calcius tibicen. Zeitschrift für Tierpsychologie, 6, 655671.Google Scholar
Hazlett, B. A., 1970. Tactile stimuli in the social behaviour of Pagurus bernhardus (Decapoda, Paguridae). Behaviour, 36, 2048.Google Scholar
Hazlett, B. A., 1978. Shell exchanges in hermit crabs: aggression, negotiation or both? Animal Behaviour, 26, 12781279.CrossRefGoogle Scholar
Hazlett, B. A. & Winn, H. E., 1962 a. Sound production and associated behaviour of Bermuda crustaceans (Panulirus, Gonodactylus, Alpheus and Synalpheus). Crustaceana, 4, 2538.Google Scholar
Hazlett, B. A. & Winn, H. E., 1962 b. Characteristics of a sound produced by the lobster Justitia longimanus. Ecology, 43, 741742.CrossRefGoogle Scholar
Herbst, J. F. W., 1804. Versuch einer Naturgeschicte der Krabben und Krebse, nebst einer systematichen Beschreibung ihrer verschiedenen Arten, vol. 3. Berlin.Google Scholar
Horch, K., 1971. An organ for hearing and vibration sense in the ghost crab Ocypode. Zeitschrift fur vergleichende Physiologie, 73, 1—21.CrossRefGoogle Scholar
Horch, K., 1975. The acoustic behaviour of the ghost crab Ocypode cordimana Latreille, 1818 (Decapoda, Brachyura). Crustaceana, 29, 193205.CrossRefGoogle Scholar
Horch, K. W. & Salmon, M., 1969. Production, perception and reception of acoustic stimuli by semiterrestrial crabs (genus Ocypode and Uca, family Ocypodidae). Forma et Functio, 1, 125.Google Scholar
Kim, S. H., 1974 a. Sound production and behaviour of crabs, Portunus trituberculatus (Miers). II. Bulletin of the Korean Fisheries Society 7, 28—36.Google Scholar
Kim, S. H., 1974 b. Sound protection and phonotaxic behaviour of crabs, Portunus trituberculatus (Miers). I. New Physica (Korean Physics Society), 14, 2026.Google Scholar
Kim, S. H., 1978. Study on sound protection and phonotaxis of some fishes and crabs. Bulletin of the Korean Fisheries Technological Society, 14, 1536.Google Scholar
Kim, S. H., 1981. Study on the sound production of lobster (Linuparus trigonus Siebold). Collected Papers. Pusan Industrial University, 2, 275280.Google Scholar
Kinsler, L. E. & Fry, A. R., 1962. Fundamentals of Acoustics, 2nd ed.New York: Wiley.Google Scholar
Lewinsohn, C., 1960. Die Anomuren des Roten Meeres (Crustacea, Decapoda: Paguridae, Galatheidea, Hippidea). Zoologische verhandelingen, no. 104, 213 pp.Google Scholar
Lindeberg, R. B., 1955. Growth, population dynamics and field behaviour in the spiny lobster, Panulirus interruptus (Randall). University of California Publications in Zoology, 59, 157248.Google Scholar
Mclaughlin, P. A. & Bailey-Brock, J. H., 1975. A new Hawaiian hermit crab of the genus Trizopagurus (Crustacea, Decapoda, Diogenidae), with notes on its behavior. Pacific Science, 29, 259266.Google Scholar
Macmillan, D. L., Field, L. H. & Oakley, J., 1981. The relationship between muscle tension and output in a crustacean meropodite-carpopodite chordotonal organ (MCI). Comparative Biochemistry and Physiology, 68A, 331335.CrossRefGoogle Scholar
Mulligan, B. E. & Fischer, R. B., 1977. Sounds and behaviour of the spiny lobster Panulirus argus (Lateille, 1804) (Decapoda, Palinuridae). Crustaceana, 32, 185199.CrossRefGoogle Scholar
Sandeman, D. C. & Wilkens, L. A., 1982. Sound production by abdominal stridulation in the Australian Murray River crayfish Euastacus armatus. Journal of Experimental Biology, 99, 469472.CrossRefGoogle Scholar
Shelton, R. G. J. & Laverack, M. S., 1968. Observations on a redescribed crustacean cuticular sense organ. Comparative Biochemistry and Physiology, 25, 10491059.CrossRefGoogle Scholar
Silver, S. C. & Halls, J. A. T., 1980. Recording the sounds of hydropsychid larvae-a precautionary tale. Journal of Comparative Physiology, 140, 159161.CrossRefGoogle Scholar
Spight, T. M., 1977. Availability and use of shells by intertidal hermit crabs. Biological Bulletin. Marine Marine Biological Laboratory, Woods Hole, Mass., 152, 120133.CrossRefGoogle Scholar
Stephenson, W., 1969. The morphology of stridulatory structures in the genus Ovalipes Rathbun. Transactions of the Royal Society of New Zealand (Biological Sciences), 11, 4371.Google Scholar
Tautz, J. & Sandeman, D. C., 1980. The detection of waterborne vibration by sensory hairs on the chelae of crayfish. Journal of Experimental Biology, 88, 351356.CrossRefGoogle Scholar
Tazaki, K. & Ohnishi, M., Responses from tactile receptors in the antennae of the spiny lobster Panulirus japonicus. Comparative Biochemistry and Physiology, 47A, 13231327.Google Scholar
Tweedie, M. W. F., 1950. Notes on grapsoid crabs from the Raffles Museum. Bulletin of the Raffles Museum, no. 23, 310324.Google Scholar
Vance, R. R., 1972. The role of shell adequacy in behavioral interactions involving hermit crabs. Ecology, 53, 10751083.Google Scholar
Weise, K., 1976. Mechanoreceptors for near-field water displacements in crayfish. Journal of Neurophysiology, 39, 816833.Google Scholar
Whitelegge, T., 1898. Scientific results of the trawling expedition of H.M.C.S. ‘Thetis’ off the coast of New South Wales. Crustacea I. Memoirs of the Australian Museum, 4, 135199.Google Scholar