Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-03T02:23:36.209Z Has data issue: false hasContentIssue false

Salt Error in Determinations of Phosphate in Sea Water

Published online by Cambridge University Press:  11 May 2009

L. H. N. Cooper
Affiliation:
Assistant Chemist at the Plymouth Laboratory

Extract

The yellowing which may occur during phosphate determinations in sea water is attributed to hydrolytic products of complex molybdenum halides.

When 1 ml. of the usual acid molybdate reagent is used per 100 ml. of water, addition of copper as recommended by Kalle reduces the development of colour in sea water samples and in distilled water standards to the same extent. The correction factor 1·12 applies to comparison by daylight in Hehner cylinders and to photometric determinations with a red filter.

When 2 ml. of reagent is used per 100 ml. of water, the factor depends on the method of comparison. With comparison by daylight in Hehner cylinders it is 1·35, whereas if a photometer with a red filter is used it is only 1·19.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1938

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angell, F. G., James, R. G. & Wardlaw, W., 1929. Complex bromides of quinquevalent molybdenum. Journ. Chem. Soc., pp. 2578–89.CrossRefGoogle Scholar
Atkins, W. R. G., 1923. The phosphate content of fresh and salt waters in its relationship to the growth of the algal plankton. Journ. Mar. Biol. Assoc., Vol. XIII, pp. 119–50.CrossRefGoogle Scholar
Atkins, W. R. G. 1928. Seasonal variations in the phosphate and silicate content of sea water during 1926 and 1927 in relation to the phytoplankton crop. Journ. Mar. Biol. Assoc., Vol. xv, pp. 191205.CrossRefGoogle Scholar
Brambel, C. E. & Cowles, R. P., 1937. The photoelectric determination of phosphorus in estuarine waters. Science, Vol. 85, pp. 340–2.CrossRefGoogle ScholarPubMed
Brujewicz, S. W. & Krasnowa, W. S., 1933. Cited by S. W. Brujewicz in Methods of Chemical Oceanography (in Russian), Moscow, 1933, p. 118.Google Scholar
Buch, K., 1929. Über die Bestimmungen von Stickstoffverbindungen und Phosphaten im Meerwasser. Rapp. Proc.-Verb. Cons. Int. Expl. Mer, Vol. LIII, pp. 3652.Google Scholar
Cooper, L. H. N., 1933. Chemical constituents of biological importance in the English Channel. Pt. I. Journ. Mar. Biol. Assoc., Vol. XVIII, pp. 677728.CrossRefGoogle Scholar
Cooper, L. H. N. & Milne, A., 1938. The ecology of the Tamar Estuary. II. Underwater illumination. Journ. Mar. Biol. Assoc., Vol. XXII, pp. 509–27.CrossRefGoogle Scholar
Ibañez, O. G., 1933. Note on the effect of salts in the determination of phosphate in sea water by Deniges’ method. Journ. Cons. Int. Expl. Mer, Vol. VIII, pp. 326–9.CrossRefGoogle Scholar
Gelsrud, I., Robinson, R. J. & Thompson, T. G., 1936. The distribution of phosphate in the sea water of the north-east Pacific. Univ. Washington Publ. Oceanogr., Vol. 3, No. 1, pp. 134.Google Scholar
James, R. G. & Wardlaw, W., 1927. Co-ordination compounds of quinquevalent molybdenum. Journ. Chem. Soc., pp. 2145–56.CrossRefGoogle Scholar
Kalle, K., 1933, 1934, 1935a, b. Meereskundliche chemische Untersuchungen mit Hilfe des Zeisschen Pulfrich-Photometers. II. Arbeitsweise. III. Methodische Untersuchung der Phosphatgehaltsbestimmung. IV. Der Einfluss chemischer Stoffe auf die Phosphatgehaltsbestimmung. V. Die Bestimmung des GesamtPhosphorgehaltes, des Plankton-Phosphorgehaltes (lebende Substanz) und Trübungsmessungen. Ann. d. Hydrogr., Jahrg. LXI, pp. 124–8; LXII, pp. 65–74 and 95–102; LXIII, pp. 58–65, 195–204.Google Scholar
Redfield, A. C., Smith, H. P. & Ketchum, B., 1937. The cycle of phosphorus in the Gulf of Maine. Biol. Bull., Vol. LXXIII, pp. 421–43.CrossRefGoogle Scholar
Robinson, R. J. & Wirth, H. E., 1935. Photometric investigation of the ceruleomolybdate determination of phosphate in waters. Ind. Eng. Chem. (Anal.), Vol. 7, pp. 147–56.CrossRefGoogle Scholar
Tischer, J., 1934. Über die Bestimmung des Phosphorsäure mittels der PhosphorMolybdänblau-Methode und deren Anwendung auf Pflanzenaschen. Zeits. Pflanzenernährung Düngung u. Bodenkunde, Teil A, Bd. 33, pp. 192242.CrossRefGoogle Scholar
Wattenberg, H., 1937. Critical review of the methods used for determining nutrient salts and related constituents in salt water. Rapp. Proc.-Verb. Cons. Int. Expl. Mer, Vol. CIII, pp. 126.Google Scholar