Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T06:48:28.788Z Has data issue: false hasContentIssue false

Physiological energetics of the estuarine crab Hemigrapsus crenulatus (Crustacea: Decapoda: Varunidae): responses to different salinity levels

Published online by Cambridge University Press:  14 January 2010

Mauricio Urbina
Affiliation:
Instituto de Acuicultura, Universidad Austral de Chile, Casilla 1327, Puerto Montt, Chile
Kurt Paschke*
Affiliation:
Instituto de Acuicultura, Universidad Austral de Chile, Casilla 1327, Puerto Montt, Chile
Paulina Gebauer
Affiliation:
Centro de Investigaciones I-Mar, Universidad de Los Lagos, Puerto Montt, Chile
Oscar R. Chaparro
Affiliation:
Instituto de Biología Marina Dr Jürgen Winter, Universidad Austral de Chile, Valdivia, Chile
*
Correspondence should be addressed to: K. Paschke, Instituto de Acuicultura, Universidad Austral de Chile, Casilla 1327, Puerto Montt, Chile email: kpaschke@uach.cl

Abstract

Hemigrapsus crenulatus is an abundant and frequent decapod crustacean inhabiting estuarine environments, where it must tolerate large shifts in salinity. The present study evaluates the effect of salinity (5, 13, 21 and 30 psu) on the adult physiological processes related to the energy balance. The growth potential (SFG) and the respired oxygen:excreted nitrogen ratio were used as indices of stress. Ingestion, excretion and respiration rates showed a significant dependence on salinity, being higher at low salinities. The assimilation efficiency remained constant along the studied salinity gradient. The assimilation and ingestion rates were inversely related with the salinity. Given this scenario, the growth potential remained constant within the studied salinity gradient, as did the oxygen:nitrogen ratio. The results suggest that the increased energy losses at low salinity due to respiration and excretion are compensated by an increment in the ingestion rate, contributing to the success of H. crenulatus in dynamic habitats such as estuaries.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayne, B.L., Bayne, C.J., Carefoot, T.C. and Thompson, R.J. (1976) The physiological ecology of Mytilus californianus Conrad. 1. Metabolism and Energy Balance. Oecologia (Berlin) 22, 211228.Google Scholar
Bourdeau, P.E. and O'Connor, N.J. (2003) Predation by the nonindigenous Asian shore crab Hemigrapsus sanguineus on macroalgae and molluscs. Northeastern Naturalist 10, 319334.CrossRefGoogle Scholar
Charmantier, G., Haond, H., Lignot, J. and Charmantier, M. (2001) Ecophysiological adaptation to salinity throughout a life cycle: a review in homarid lobsters. Journal of Experimental Biology 204, 967977.CrossRefGoogle ScholarPubMed
Charmantier, G., Gimenez, L., Charmantier-Daures, M. and Anger, K. (2002) Ontogeny of osmoregulation, physiological plasticity and larval export strategy in the grapsid crab Chasmagnathus granulata (Crustacea, Decapoda). Marine Ecology Progress Series 229, 185194.CrossRefGoogle Scholar
Conover, R.J. (1966) Assimilation of organic matter by zooplankton. Limnology and Oceanography 11, 338345.Google Scholar
Coroto, F.S. and Holiday, C.W. (1996) Branchial Na+, K+-ATPase and osmoregulation in the purple shore crab Hemigrapsus nudus (Dana). Comparative Biochemistry and Physiology Part A 113, 361368.CrossRefGoogle Scholar
Cunha, M.R., Sorve, J.C. and Moreira, M.H. (1999) Spatial and seasonal changes of brackish peracaridan assemblages and their relation to some environmental variables in two tidal channels of the Ria de Aveiro (NW Portugal). Marine Ecology Progress Series 190, 6987.CrossRefGoogle Scholar
Davenport, J., Gruffydd, L.D. and Beaumont, A.R. (1975) An apparatus to supply seawater of fluctuating salinity and its use in the study of the salinity tolerance of larvae of the scallop Pecten maximus L. Journal of the Marine Biological Association of the United Kingdom 55, 391410.CrossRefGoogle Scholar
Dutil, J.D., Lambert, Y. and Boucher, E. (1997) Does higher growth rate in Atlantic cod (Gadus morua) at low salinity result from lower standard metabolic rate or increased protein digestibility? Canadian Journal of Fisheries and Aquatic Sciences 54, 99103.CrossRefGoogle Scholar
Elliot, J.M. and Davison, W. (1975) Energy equivalents of oxygen consumption in animal energetics. Oecologia 19, 195201.CrossRefGoogle Scholar
FAO. (1998) Composición química. In El pescado fresco; su calidad y cambios de su calidad. Documento técnico de pesca, No. 348.Google Scholar
Forster, J.M.R. and Gabbott, P.A. (1971) The assimilation of nutrients from compounded diets by the prawns Palaemon serratus and Pandalus platyceros. Journal of the Marine Biological Association of the United Kingdom 51, 943961.Google Scholar
Gnaiger, E. (1983) Calculation of energetic and biochemical equivalents of respiratory oxygen consumption. In Gnaiger, E. and Forstner, H. (eds) Polarographic oxygen sensors. Berlin: Springer-Verlag, pp. 337345.CrossRefGoogle Scholar
Grandjean, M.M. (1985) Efecto de la temperatura sobre el balance energético y el crecimiento en Hemigrapsus crenulatus (Milne-Edwards, 1837) bajo condiciones de laboratorio. Tesis de magíster. Universidad Austral de Chile, Valdivia, Chile.Google Scholar
Guerin, J.L. and Stickle, W.B. (1997a) A comparative study of two sympatric species within the genus Callinectes: osmoregulation, long-term acclimation to salinity and the effects of salinity on growth and moulting. Journal of Experimental Marine Biology and Ecology 218, 165186.CrossRefGoogle Scholar
Guerin, J.L. and Stickle, W.B. (1997b) Effect of salinity on survival and bioenergetics of juvenile lesser blue crabs, Callinectes similis. Marine Biology 129, 6369.CrossRefGoogle Scholar
Iribarne, O., Bortolus, A. and Botto, F. (1997) Between habitat differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata. Marine Ecology Progress Series 155, 137145.CrossRefGoogle Scholar
Kinne, O. (1966) Physiological aspects of animal life in estuaries with special reference to salinity. Netherlands Journal of Sea Research 3, 222244.CrossRefGoogle Scholar
Kinne, O. (1971) Salinity, animals: invertebrates. Environmental factors. Part 2. In A comprehensive, integrated treatise on life in oceans and coastal waters. Volume I. Marine Ecology 1, 821995.Google Scholar
Koroleff, F. and Grasshoff, K. (1983) Determination of nutrients. Determination of ammonia. In Grasshoff, K., Ehrhardt, M. and Kremling, K. (eds) Methods for seawater analysis. Weinheim: Verlag Chemie GmbH, pp. 150157.Google Scholar
Ledesma, M.E. and O'Connor, N.J. (2001) Habitat and diet of non-native crab Hemigrapsus sanguineus in southern New England. Northeastern Naturalist 8, 6378.CrossRefGoogle Scholar
Livingstone, D.R., Widdows, J. and Fieth, P. (1979) Aspects of nitrogen metabolism of the common mussel, Mytilus edulis: adaptation to abrupt and fluctuating changes in salinity. Marine Biology 53, 4155.CrossRefGoogle Scholar
Lohrer, A.M. and Whitlatch, R.B. (2002) Relative impacts of two exotic brachyuran species on blue mussel populations in Long Island Sound. Marine Ecology Progress Series 227, 135144.CrossRefGoogle Scholar
Mayzaud, P. and Conover, R.J. (1988) O:N atomic ratio as a tool to describe zooplankton metabolism. Marine Ecology Progress Series 45, 289302.CrossRefGoogle Scholar
Morgan, M.D. (1980) Grazing and predation of the grass shrimp Palaemonetes pugio. Limnology and Oceanography 25, 869902.CrossRefGoogle Scholar
Navarro, J. (1988) The effects of salinity on the physiological ecology of Choromytilus chorus (Molina, 1982) (Bivalvia: Mytilidae). Journal of Experimental Marine Biology and Ecology 122, 1933.Google Scholar
Navarro, J.M. and Gonzalez, C.M. (1998) Physiological responses of Chilean scallop, Argopecten purpuratus, to decreasing salinity. Aquaculture 167, 315327.CrossRefGoogle Scholar
Novo, M., Miranda, R. and Bianchini, A. (2005) Sexual and seasonal variations in osmoregulation and ionoregulation in the estuarine crab Chasmagnathus granulata (Crustacea, Decapoda). Journal of Experimental Marine Biology and Ecology 323, 118137.Google Scholar
Paine, R. (1971) The measurement and application of the calorie to ecological problems. Annual Review of Ecology and Systematics 2, 145164.CrossRefGoogle Scholar
Quijón, P., Jaramillo, E. and Pino, M. (1996) Macroinfaunal assemblages associated with mussels and clams beds in an Estuary of Southern Chile. Estuaries 19, 6274.Google Scholar
Retamal, M.A. (1981) Catálogo ilustrado de los crustáceos de Chile. Gayana Zoologica, 44, 1110.Google Scholar
Shuhong, Z. (2006) The influence of salinity, rhythm and day length on feeding behavior in Meretrix meretrix Linnaeus. Aquaculture 252, 584590.Google Scholar
Sokal, R.R. and Rohlf, F.J. (1995) Biometry. The principles and practice of statistics in biological research. 3rd edition.New York: W.H. Freeman and Co.Google Scholar
Spicer, J.I. and Strömberg, J.O. (2003) Metabolic responses to low salinity of the shipworm Teredo navalis (L.). Sarsia 88, 302305.Google Scholar
Stickle, W.B. and Bayne, B.L. (1987) Energetics of the muricid gastropod Thais (Nucella) lapillus (L). Journal of Experimental Marine Biology and Ecology 107, 263278.CrossRefGoogle Scholar
Taylor, H. and Seneviratna, D. (2005) Ontogeny of salinity tolerance and hyper-osmoregulation in embryos of intertidal crabs Hemigrapsus edwarsii and Hemigrapsus crenulatus (Decapoda, Grapsidae): survival of acute hyposaline exposure. Comparative Biochemistry and Physiology Part A 140, 495505.CrossRefGoogle ScholarPubMed
Toro, J.E. and Winter, J.E. (1983) Estudios en la ostricultura Quempillén, un estuario del sur de Chile. Parte I. La determinación de los factores abióticos en la cuantificación del seston como oferta alimenticia y su utilización por Ostrea chilensis. Memorias de la Asociacion Latinoamericana de Acuicultura 5, 129143.Google Scholar
Westermeier, R., Gomez, I. and Rivera, P. (1993) Suspended farming of Gracilaria chilensis (Rhodophyta, Gigartinales) at Cariquilda River, Maullín, Chile. Aquaculture 113, 215229.Google Scholar
Widdows, J. (1985) Physiological procedures. In Bayne, B.C., Brown, D.A., Burns, K., Ivanovici, A., Livingstone, D.R., Lowe, D.M., Moore, M.N., Steabbing, A.R.D. and Widdows, J. (eds) The effects of stress and pollution on marine animals. New York: Praeger Publishers, pp. 161178.Google Scholar
Wieser, W. (1986) Bioenergetik. Energietransformationen bei Organismen. 1st edition.New York: Georg Thieme Verlag Stuttgart.Google Scholar
Willmer, P., Stone, G. and Johnston, I. (2000) Environmental physiology of animals. 1st edition.Oxford, UK: Blackwell Science Ltd.Google Scholar
Winter, J.E. (1978) A review on the knowledge of suspension feeding in lamellibranchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture 13, 133.CrossRefGoogle Scholar