Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T15:27:21.807Z Has data issue: false hasContentIssue false

Manganese and the Growth of Phytoplankton

Published online by Cambridge University Press:  11 May 2009

H. W. Harvey
Affiliation:
Hydrographer at the Plymouth Laboratory

Extract

Inshore water collected near Plymouth during the late summer and autumn of 1945, after enrichment with nitrate, phosphate and iron, did not support continued growth of a species of Chlamydomonas, of Chlorella, of a Cryptomonad and of two species of Chrysomonads.

The addition of 0-5-2-0 mg. Mn" or Mnv/m.3 allowed vigorous growth and the production of heavy crops. The effect on Chlamydomonas of adding as little as o-i mg./m.3 was apparent.

The growth of Coscinodiscus excentricus varied in waters collected from inshore and from offshore which had been similarly enriched with N, P and Fe. The addition of manganese had only a minor effect.

The addition of other microelements to inshore waters enriched with N, P, Fe and Mn did not affect growth rate of Chlamydomonas. Manganese starvation led to the production of small Chlamydomonas cells.

Manganese starvation caused a resting condition or lag period in Chlorella. A supply of manganese alone was insufficient for recovery; a period of illumination was also required for internal changes to take place before logarithmic growth was resumed.

The addition of manganese was effective when either nitrate or ammonium was supplied as source of nitrogen, in dim, bright, continuous, or discontinuous illumination.

Metabolic products which leached out of the cells into the water during the growth of both Chlorella sp. and of Nitzschia closterium acted as a growth stimulant.

Manganese at great dilution is rapidly 'collected' from solution by Chlorella. During growth this alga abstracts a material proportion from water containing 5 mg. Mn/m.3

Using Chlamydomonas as 'analyst', it was found that added organic detritus, or the corpses of marine bacteria, adsorbed a material proportion of the manganese in sea water containing 1-2 mg. Mn/m.3

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1947

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Algeus, S., 1946. Untersuchungen über die Ernährungsphysiologie der Chlorophyceen. Lund.Google Scholar
Allen, E. J., 1914. On the culture of the plankton diatom Thalassiosira gravida Cleve, in artificial sea water. Journ. Mar. Biol. Assoc., Vol. X, pp. 417–39.Google Scholar
Allen, E. J. & Nelson, E. W., 1910. On the artificial culture of marine plankton organisms. Quart. Journ. Micr. Sci., Vol. LV, pp. 361431.Google Scholar
Cooper, L. H. N., 1939. Phosphorus, nitrogen, iron and manganese in marine zooplankton. Journ. Mar. Biol. Assoc., Vol. XXIII, pp. 387–90.Google Scholar
Correns, W., 1941. Nachr. Akad. Wiss. Göttingen, Math.-Phys. Klasse, Bd. 5, p. 119. (Quoted by Pettersson, 1945.)Google Scholar
Emerson, R. & Lewis, C., 1939. The quantum efficiency of photosynthesis. Carnegie Inst. Year Book, Vol. XXXIX, pp. 154–8.Google Scholar
Hart, T. J., 1941. Phytoplankton periodicity in Antarctic surface waters. Discovery Rep., No. 21, pp. 261356.Google Scholar
Harvey, H. W., 1937. The supply of iron to diatoms. Journ. Mar. Biol. Assoc., Vol. XXII, pp. 205–19.CrossRefGoogle Scholar
Harvey, H. W., 1939. Substances controlling the growth of a diatom. Journ. Mar. Biol. Assoc., Vol. XXIII, pp. 499520.CrossRefGoogle Scholar
Kylin, H., 1941. Biologische Analyse des Meerwassers. Fysiogr. Sällsk. Forhandl. Lund, Bd. II, No. 21.Google Scholar
Kylin, H., 1942. Über den Einfluss von Glucose, Ascorbinsäure und Heteroauxin auf die Keimlinge von Ulva und Enteromorpha. Fysiogr. Sällsk. Forhandl. Lund, Bd. 12, No. 12.Google Scholar
Kylin, H., 1943. Über die Ernährung von Ulva lactuca. Fysiogr. Sällsk. Forhandl. Lund, Bd. 13, No. 21.Google Scholar
Kylin, H., 1945. Weitere Angaben über die Ernährung von Ulva lactuca. Fysiogr. Sällsk. Forhandl. Lund, Bd. 15, No. 3.Google Scholar
Levring, T., 1945. Some culture experiments with marine plankton diatoms. Goteborgs Kungl. vetenskaps och Vitterhets samhälles Handlingar (6), Ser. B, Bd. 3, No. 12, 18 pp.Google Scholar
Levring, T., 1946. Some culture experiments with Ulva and artificial sea water. Fysiogr. Sällsk. Forhandl. Lund, Bd. 16, No. 7.Google Scholar
Matudiara, T., 1939. The physiological property of sea water considered from the effect upon the growth of diatom, with special reference to its vertical and seasonal change. Bull. Jap. Soc. Sci. Fish., Vol. VIII, pp. 187–93.Google Scholar
Noack, K. & Pirson, A., 1939. Die Wirkung von Eisen und Mangan auf die Stichstoff assimilation von Chlorellen. Ber. dtsch. hot. Ges., Bd. 57, p. 422.Google Scholar
Noddack, I. & Noddack, W., 1940. Die Häufigkeiten der Schwermetalle in Meerestieren. Archiv für Zoologie, Bd. 32, No. 1, p. 1.Google Scholar
Pettersson, H., 1945. Iron and manganese on the ocean floor. Göteborgs Kungl. vetenskaps och Vitterhets samhälles Handlingar (6), Ser. B, Bd. 3, No. 8, 37 pp.Google Scholar
Pirson, A., 1937. Ernährungs- und stoffwechselphysiologische Untersuchungen an Fontinalis und Chlorella. Z. Bot., Bd. 31, pp. 193267.Google Scholar
Riley, G. A., 1943. Physiological aspects of spring diatom flowerings. Bull. Bingham Oceanogr. Coll., Vol. VIII, Art. 4, 53 pp.Google Scholar
Schreiber, E., 1929. Die Methoden einer physiologischen Meerwasseranalyse. Rapp. Cons. Explor. Mer, T. 53, pp. 75–9.Google Scholar
Suneson, S., 1942. Über wachstumsfördernde Wirkung von Algenextrakten auf Ulva und Enteromorpha. Fysiogr. Sällsk. Forhandl. Lund, Bd. 12, No. 16.Google Scholar
Suneson, S., 1943. Weitere Untersuchungen über wachstumsfördernde Wirkung von Algenextrakten auf Ulva lactuca. Fysiogr. Sällsk. Forhandl. Lund, Bd. 13, No. 20.Google Scholar
Thompson, T. G. & Wilson, T., 1935. The occurrence and determination of manganese in seawater. Journ. Amer. Chem. Soc., Vol. LVII, pp. 233–6.CrossRefGoogle Scholar
De Valera, M., 1940. Note on difference in growth of Enteromorpha species in various culture media. Fysiogr. Sällsk. Forhandl. Lund, Bd. 10.Google Scholar
Zobell, C. E. 1946. Marine Microbiology. Watham, Mass., U.S.A.Google Scholar