Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-01T19:43:18.716Z Has data issue: false hasContentIssue false

Green tides on inter- and subtidal sandy shores: differential impacts on infauna and flatfish

Published online by Cambridge University Press:  25 January 2017

N. Quillien*
Affiliation:
Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Plouzané, France Åbo Akademi University, Environmental and Marine Biology, Turku, Finland Observatoire Marin, Institut Universitaire Européen de la Mer, Plouzané, France
M. C. Nordström
Affiliation:
Åbo Akademi University, Environmental and Marine Biology, Turku, Finland
H. Le Bris
Affiliation:
ESE, Ecology and Ecosystem Health, Agrocampus Ouest, INRA, Rennes, France
E. Bonsdorff
Affiliation:
Åbo Akademi University, Environmental and Marine Biology, Turku, Finland
J. Grall
Affiliation:
Observatoire Marin, Institut Universitaire Européen de la Mer, Plouzané, France
*
Correspondence should be addressed to: N. Quillien, Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Plouzané, France email: nolwenn.quillien@gmail.com

Abstract

Beach ecosystems extend from dune to offshore areas along most coasts, and provide essential services that are not provided by any other ecosystem. Indeed, sandy systems contain unique biodiversity and supply nursery and foraging areas for numerous commercially important marine species, such as flatfish. However, these systems are threatened by increasing anthropogenic pressure. Green tides (GT, i.e. accumulations of green opportunistic macroalgae) are a major human-induced threat to marine ecosystems, from inshore to nearshore. This eutrophication process greatly affects both benthic invertebrate communities and flatfish communities, within sheltered and non- or microtidal systems. However, the responses of dynamic open macrotidal sandy systems to eutrophication in the form of macroalgal mats are not yet fully understood. In particular, understanding the effects of GT on two connected biological compartments (infauna and flatfish) within two connected habitats (intertidal and subtidal) is crucial. Here, we set out to assess the influence of several environmental variables, including Ulva biomass, on the variability in infauna and flatfish communities in both the intertidal and the subtidal at four sites impacted or not by GT. In total, 110 biodiversity samples were analysed with classic and novel analytical approaches. Our results demonstrate that the presence of GT specifically impacts intertidal macroinvertebrate communities. However, small effects of GT on subtidal infauna communities, as well as on species-specific flatfish at both intertidal and subtidal, were still detectable. Our findings underline the vulnerability of highly dynamic ecosystems exposed to anthropogenic stress, in particular intertidal sandy shores.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aarnio, K. and Mattila, J. (2000) Predation by juvenile Platichthys flesus (L.) on shelled prey species in a bare sand and drift algae habitat. Hydrobiologia 440, 347355.Google Scholar
Aubrey, D.G. (1979) Seasonal patterns of onshore/offshore sediment movement. Journal of Geophysical Research 84, 63176354.Google Scholar
Baden, S.P., Loo, L., Pihl, L. and Rosenberg, R. (1990) Effects of eutrophication on benthic communities including fish: Swedish west coast. AMBIO A Journal of the Human Environment 19, 113122.Google Scholar
Barbier, E.E.B., Hacker, S.D.S., Kennedy, C., Koch, E.W., Stier, A.C. and Silliman, B.R. (2011) The value of estuarine and coastal ecosystem services. Ecological Monographs 81, 169193.CrossRefGoogle Scholar
Barboza, F.R. and Defeo, O. (2015) Global diversity patterns in sandy beach macrofauna: a biogeographic analysis. Scientific Reports 5, 14515.Google Scholar
Beck, M.W., Heck, K.L., Able, K.W., Childers, D.L., Eggleston, D.B., Gillanders, B.M., Halpern, B., Hays, C.G., Hoshino, K., Minello, T.J., Orth, R.J., Sheridan, P.F. and Weinstein, M.P. (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51, 633.Google Scholar
Borcard, D. and Legendre, P. (1994) Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environmental and Ecological Statistics 1, 3761.Google Scholar
Charlier, R.H., Morand, P., Finkl, C.W. and Thys, A. (2007) Green tides on the Brittany Coasts. Environmental Research, Engineering and Management 3, 5259.Google Scholar
Cloern, J.E. (2001) Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210, 223253.Google Scholar
Costanza, R., Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R. V., Paruelo, J., Raskin, R.G. and Sutton, P. (1997) The value of the world’s ecosystem services and natural capital. Nature 387, 253260.Google Scholar
Dahl, E. (1952) Some aspects of the ecology and zonation of fauna on sandy beaches. Oikos 4, 127.Google Scholar
De la Huz, R., Lastra, M. and López, J. (2002) The influence of sediment grain size on burrowing, growth and metabolism of Donax trunculus L. (Bivalvia: Donacidae). Journal of Sea Research 47, 8595.Google Scholar
Defeo, O. and Mclachlan, A. (2005) Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Marine Ecology Progress Series 295, 120.Google Scholar
Defeo, O., McLachlan, A., Schoeman, D.S., Schlacher, T. a., Dugan, J., Jones, A., Lastra, M. and Scapini, F. (2009) Threats to sandy beach ecosystems: a review. Estuarine, Coastal and Shelf Science 81, 112.Google Scholar
Degraer, S., Mouton, I., de Neve, L. and Vincx, M. (1999) Community structure and intertidal zonation of the macrobenthos on a macrotidal, ultra-dissipative sandy beach: summer-winter comparison. Estuaries 22, 742752.Google Scholar
Deniel, C. (1973) Nutrition et croissance du jeune turbot Scophthalmus maximus L. (Téléostéens-Bothidae). Thèse de troisième cycle, Université de Brest, 247 pp.Google Scholar
Dorel, D., Koutsikopoulos, C., Desaunay, Y. and Marchand, J. (1991) Seasonal distribution of young sole (Solea solea (L.)) in the nursery ground of the Bay of Vilaine (Northern Bay of Biscay). Netherlands Journal of Sea Research 27, 297306.CrossRefGoogle Scholar
Dray, S., Legendre, P. and Peres-Neto, P.R. (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196, 483493.Google Scholar
Gibson, R.N. (1994) Impact of habitat quality and quantity on the recruitment of juvenile flatfishes. Netherlands Journal of Sea Research 32, 191206.Google Scholar
Gibson, R.N. (2003) Go with the flow: tidal migration in marine animals. Hydrobiologia 503, 153161.Google Scholar
Gibson, R.N. and Ezzi, I.A. (1980) The biology of the scaldfish, Arnoglossus laterna (Walbaum) on the west coast of Scotland. Journal of Fish Biology 17, 565575.Google Scholar
Gillanders, B.M., Able, K.W., Brown, J.A., Eggleston, D.B. and Sheridan, P.F. (2003) Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Marine Ecology Progress Series 247, 281295.Google Scholar
Glémarec, M. (1973) The benthic communities of the European North Atlantic continental shelf. Oceanography and Marine Biology: an Annual Review 11, 263289.Google Scholar
Grall, J. and Chauvaud, L. (2002) Marine eutrophication and benthos: the need for new approaches and concepts. Global Change Biology 8, 813831.Google Scholar
Guillou, J. (1980) Les peuplements de sables fins du littoral Nord-Gascogne. Thèse de troisième cycle, Université de Brest, 236 pp.Google Scholar
Knott, D.M., Calder, D.R. and Van Dolah, R.F. (1983) Macrobenthos of sandy beach and nearshore environments at Murrells Inlet, South Carolina, U.S.A. Estuarine, Coastal and Shelf Science 16, 573590.Google Scholar
Korpinen, S. and Bonsdorff, E. (2015) Eutrophication and hypoxia: impacts of nutrient and organic enrichment. In Crowe, T.P. and Frid, C.L.J. (eds) Marine ecosystems: human impacts on biodiversity, functioning and services. Cambridge: Cambridge University Press, pp. 202243.CrossRefGoogle Scholar
Kostecki, C., Roussel, J., Desroy, N., Roussel, G., Lanshere, J., Le Bris, H. and Le Pape, O. (2012) Trophic ecology of juvenile flatfish in a coastal nursery ground: contributions of intertidal primary production and freshwater particulate organic matter. Marine Ecology Progress Series 449, 221232.Google Scholar
Leber, K.M. (1982a) Seasonality of macroinvertebrates on a temperate, high wave energy sandy beach. Bulletin of Marine Science 32, 8698.Google Scholar
Leber, K.M. (1982b) Bivalves (Tellinacea: Donacidae) on a North Carolina beach: contrasting population size structures and tidal migrations. Marine Ecology Progress Series 7, 297301.Google Scholar
Legendre, P. and Anderson, M.J. (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69, 124.Google Scholar
Legendre, P., Borcard, D., Blanchet, G.F. and Dray, S. (2012) MEM spatial eigenfunction and principal coordinate analyses. R package PCNM, vers. 2.1–2. http://rpackages.ianhowson.com/rforge/PCNM/Google Scholar
Legendre, P. and Gallagher, E.D. (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271280.Google Scholar
Legendre, P. and Gauthier, O. (2014) Statistical methods for temporal and space-time analysis of community composition data. Proceedings of the Royal Society B 281, 19.Google Scholar
Legendre, P. and Legendre, L. (2012) Numerical ecology, 3rd edition. Amsterdam: Elsevier Science.Google Scholar
Le Luherne, E., Réveillac, E., Ponsero, A., Sturbois, A., Ballu, S., Perdirau, M. and Le Pape, O. (2016) Fish community responses to green tides in shallow marine estuarine and coastal areas. Estuarine Coastal and Shelf Science 175, 7992.Google Scholar
Lockwood, S.J. (1974) The settlement, distribution and movements of 0-group plaice Pleuronectes platessa in Filey Bay, Yorkshire. Journal of Fish Biology 6, 465477.Google Scholar
Masselink, G. and Short, A. (1993) The effect of tide range on beach morphodynamics and morphology: a conceptual beach model. Journal of Coastal Research 9, 785800.Google Scholar
McLachlan, A. (1996) Physical factors in benthic ecology: effects of changing sand particle size on beach fauna. Marine Ecology Progress Series 131, 205217.Google Scholar
McLachlan, A. and Brown, A. (2006) The ecology of sandy shores. Burlington, MA: Academic Press.Google Scholar
Ménesguen, A. and Piriou, J. (1995) Nitrogen loadings and macroalgal (Ulva sp.) mass accumulation in Brittany (France). Ophelia 42, 227237.Google Scholar
Merceron, M. and Morand, P. (2004) Existence of a deep subtidal stock of drifting Ulva in relation to intertidal algal mat developments. Journal of Sea Research 52, 269280.Google Scholar
Morin, J.G., Kastendiek, J.E., Harrington, A. and Davis, N. (1985) Organization and patterns of interactions in a subtidal sand community on an exposed coast. Marine Ecology Progress Series 27, 163185.Google Scholar
Norkko, A. and Bonsdorff, E. (1996) Rapid zoobenthic community responses to accumulations of drifting algae. Marine Ecology Progress Series 131, 143157.Google Scholar
Norkko, J., Bonsdorff, E. and Norkko, A. (2000) Drifting algal mats as an alternative habitat for benthic invertebrates: species specific responses to a transient resource. Journal of Experimental Marine Biology and Ecology 248, 79104.Google Scholar
Nottage, A.S. and Perkins, E.J. (1983) The biology of the solenette, Buglossidium luteum (Risso), in the Solway Firth. Journal of Fish Biology 22, 2127.Google Scholar
Oksanen, J., Blanchet, G.F., Kindt, R., Legendre, P. and O'Hara, R.B. (2011). Vegan: Community. Ecology Package. http://www.cran.r-project.org/web/packages/vegan/index.htmlGoogle Scholar
Pihl, L., Modin, J. and Wennhage, H. (2005) Relating plaice (Pleuronectes platessa) recruitment to deteriorating habitat quality: effects of macroalgal blooms in coastal nursery grounds. Can. J. Fish. Aquat. Sci. 62, 11841193.Google Scholar
Pihl, L., Svenson, A., Moksnes, P.-O. and Wennhage, H. (1999) Distribution of green algal mats throughout shallow soft bottoms of the Swedish Skagerrak archipelago in relation to nutrient sources and wave exposure. Journal of Sea Research 41, 281294.Google Scholar
Quillien, N., Nordström, M.C., Gauthier, O., Bonsdorff, E., Paulet, Y.-M. and Grall, J. (2015a) Effects of macroalgal accumulations on the variability in zoobenthos of high-energy macrotidal sandy beaches. Marine Ecology Progress Series 522, 97114.Google Scholar
Quillien, N., Nordström, M.C., Guyonnet, B., Maguer, M., Le Garrec, V., Bonsdorff, E. and Grall, J. (2015b) Large-scale effects of green tides on macrotidal sandy beaches: habitat-specific responses of zoobenthos. Estuarine, Coastal and Shelf Science 164, 379391.Google Scholar
Quiniou, L. (1986) Les peuplements de poissons démersaux de la pointe de Bretagne: environnement, biologie, structure démographique, relations trophiques. Thèse d'état, Université de Bretagne Occidentale, 350 pp.Google Scholar
Rakocinski, C.F., Heard, R.W., LeCroy, S.E., McLelland, J.A. and Simons, T. (1993) Seaward change and zonation of the sandy-shore macrofauna at Perdido Key, Florida, U.S.A. Estuarine, Coastal and Shelf Science 36, 81104.Google Scholar
Schlacher, T.A., Schoeman, D.S., Dugan, J., Lastra, M., Jones, A., Scapini, F. and McLachlan, A. (2008) Sandy beach ecosystems: key features, sampling issues, management challenges and climate change impacts. Marine Ecology 29, 7090.Google Scholar
Schramm, W. (1999) Factors influencing seaweeds response to eutrophication: some results from EU-project EUMAC. Journal of Applied Phycology 11, 6978.Google Scholar
Scrosati, R. a., Knox, A.S., Valdivia, N. and Molis, M. (2011) Species richness and diversity across rocky intertidal elevation gradients in Helgoland: testing predictions from an environmental stress model. Helgoland Marine Research 65, 91102.Google Scholar
Short, A.D. and Jackson, D.W.T. (2013) Beach morphodynamics. Treatise on Geomorphology 10, 106129.Google Scholar
Smetacek, V. and Zingone, A. (2013) Green and golden seaweed tides on the rise. Nature 504, 8488.Google Scholar
R Development Core Team (2013) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. www.Rproject.orgGoogle Scholar
Törnroos, A. and Bonsdorff, E. (2012) Developing the multitrait concept for functional diversity: lessons from a system rich in functions but poor in species. Ecological Applications: A Publication of the Ecological Society of America 22, 22212236.Google Scholar
Ye, N.H., Zhang, X., Mao, Y., Liang, C., Xu, D., Zou, J., Zhuang, Z. and Wang, Q. (2011) “Green tides” are overwhelming the coastline of our blue planet: taking the world's largest example. Ecological Research 26, 477485.Google Scholar